OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 21, Iss. 13 — Jul. 1, 1982
  • pp: 2390–2394

Effect of differential spectral reflectance on DIAL measurements using topographic targets

William B. Grant  »View Author Affiliations

Applied Optics, Vol. 21, Issue 13, pp. 2390-2394 (1982)

View Full Text Article

Enhanced HTML    Acrobat PDF (575 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance.

© 1982 Optical Society of America

Original Manuscript: March 13, 1982
Published: July 1, 1982

William B. Grant, "Effect of differential spectral reflectance on DIAL measurements using topographic targets," Appl. Opt. 21, 2390-2394 (1982)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974). [CrossRef]
  2. E. R. Murray, J. E. van der Laan, J. G. Hawley, Appl. Opt. 15, 3140 (1976). [CrossRef] [PubMed]
  3. W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1978). [CrossRef]
  4. E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978). [CrossRef] [PubMed]
  5. R. A. Baumgartner, R. L. Byer, Appl. Opt. 17, 3555 (1978). [CrossRef] [PubMed]
  6. M. Endemann, R. L. Byer, Opt. Lett. 5, 452 (1980). [CrossRef] [PubMed]
  7. D. K. Killinger, N. Menyuk, W. E. DeFeo, Appl. Phys. Lett. 36, 402(1980). [CrossRef]
  8. E. R. Murray, D. D. Powell, J. E. van der Laan, Appl. Opt. 19, 1794 (1980). [CrossRef] [PubMed]
  9. N. Menyuk, D. K. Killinger, W. E. Defeo, Appl. Opt. 19, 3282 (1980). [CrossRef] [PubMed]
  10. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981). [CrossRef] [PubMed]
  11. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981). [CrossRef]
  12. W. B. Grant, “Measurement of Ozone Transport from the Los Angeles Basin Using the Airborne Laser Absorption Spectrometer and a Dasibi Ozone Monitor,” Final Report 5030-512, Jet Propulsion Laboratory, California Institute of Technology for the California Air Resources Board (1981).
  13. W. B. Grant, “Remote Measurement of Methane Using a Single-Ended He–Ne Laser System,” to be submitted for publication.
  14. J. Boscher, W. Englisch, W. Wiesemann, in Digest of Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980).
  15. J. C. Petheram, Appl. Opt. 20, 3941 (1981). [CrossRef] [PubMed]
  16. J. Boscher, F. Lehman, “Experimentelle Untersuchungen der physikalischen Grundlagen zur Fernmessung von Boden- und Vegetationsfeuchte durch aktive Infrarot-Reflexionsspektroskopie mit Hilfe der CO2-Lastertechnik,” Report 01 QS 039-AK/WF/RT 1078-3.2 (Battelle Institute eV, Frankfurt, W. Germanv.1980).
  17. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng.Appl. Opt. 21, 2386 (1982). [CrossRef] [PubMed]
  18. W. A. Hovis, Appl. Opt. 5, 815 (1966). [CrossRef] [PubMed]
  19. R. K. Vincent, Proc. IEEE 63, 137 (1975). [CrossRef]
  20. V. Leeman, D. Earing, R. Vincent, S. Ladd, “The NASA Earth Resources Spectral Information System: A Data Compilation,” NASA CR-31650-24-T (Institute of Science and Technology, U. Michigan, Ann Arbor, 1971).
  21. W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (Office of Naval Research, Washington, D.C., 1978), pp. 3–90.
  22. W. L. Wolfe, Ed., Handbook of Military Infrared Technology (Office of Naval Research, Washington, D.C., 1965), p. 85.
  23. Ref. 21, pp. 3–105.
  24. E. D. McAlister, U. California; private communication (1951–1952).
  25. Ref. 22, p. 83.
  26. W. L. Starr, E. R. Streed, A. E. Funai, “Principles of Infrared Camouflage for Low Temperature Targets,” Tech. Note N148 (U.S. Naval Civil Engineering Research and Evaluation Laboratory, Port Hueneme, Calif. (1953).
  27. W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975). [CrossRef]
  28. P. J. Brassington, Appl. Opt. 20, 3774 (1981). [CrossRef] [PubMed]
  29. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974). [CrossRef]
  30. C. L. Korb, L. D. Kaplan, J. L. Bufton, C. Y. Weng, “A Lidar Technique for Measurement of Atmospheric Carbon Dioxide,” in Proceedings, Tenth International Laser Radar Conference, Silver Spring, Md. (1980), paper H-1.
  31. L. D. Kaplan, U. Md.; private communication (1981).
  32. R. J. Brewer, C. W. Bruce, Appl. Opt. 17, 3746 (1978). [CrossRef] [PubMed]
  33. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawlev, Appl. Phys. Lett. 28, 542 (1976). [CrossRef]
  34. R. R. Patty, G. N. Rasmussen, W. A. McClenny, D. R. Morgan, NERC; private communication (1973).
  35. C. Freed, L. C. Bradley, R. G. O'Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited