OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 21, Iss. 13 — Jul. 1, 1982
  • pp: 2432–2435

Laser beam power fade induced by system and atmospheric effects

U. Halavee, M. Tamir, and E. Azoulay  »View Author Affiliations

Applied Optics, Vol. 21, Issue 13, pp. 2432-2435 (1982)

View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple model for the propagation of laser beams in a turbulent atmosphere is presented. Closed analytical expressions, suitable for system research and real-time analysis of field experiments, are obtained for the probability of the intercepted power to exceed a certain threshold level. A hierarchy of approximations is described and the validity range of each is discussed.

© 1982 Optical Society of America

Original Manuscript: January 11, 1982
Published: July 1, 1982

U. Halavee, M. Tamir, and E. Azoulay, "Laser beam power fade induced by system and atmospheric effects," Appl. Opt. 21, 2432-2435 (1982)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For example, R. A. McClatchey, J. E. A. Selby, Environmental Research Paper 460, AFCRL-TR-74-0003 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1974).
  2. R. Esposito, Proc. IEEE 55, 1533 (1967). [CrossRef]
  3. D. L. Fried, Appl. Opt. 12, 422 (1973). [CrossRef] [PubMed]
  4. P. J. Titterton, Appl. Opt. 12, 423 (1973). [CrossRef] [PubMed]
  5. A. A. Taklaya, Sov. J. Quantum Electron. 7, 517 (1977). [CrossRef]
  6. A. A. Taklaya, Sov. J. Quantum Electron. 8, 85 (1978). [CrossRef]
  7. R. S. Lawrence, J. W. Strohbehn, Proc. IEEE 58, 1523 (1970). [CrossRef]
  8. M. Tamir, U. Halavee, E. Azoulay, Appl. Opt. 20, 734 (1981). [CrossRef] [PubMed]
  9. R. L. Fante, Proc. IEEE 63, 1669 (1975). [CrossRef]
  10. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  11. A. Ishimaru, in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, Ed. (Springer, Berlin, 1978).
  12. We have found experimentally that Eq. (14) is accurate for values of σ12 slightly >0.5 (i.e., even when the probability distribution function deviates from the lognormal distribution). Since in practice one is interested in the cumulative distribution, this fact is of great importance.
  13. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  14. For example, J. Abele, H. Raidt, W. Jessen, R. Kirschmer, in AGARD Conf. Proc. 238, (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited