OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 21, Iss. 16 — Aug. 15, 1982
  • pp: 2996–3001

Interpretation of airborne oceanic lidar: effects of multiple scattering

Howard R. Gordon  »View Author Affiliations


Applied Optics, Vol. 21, Issue 16, pp. 2996-3001 (1982)
http://dx.doi.org/10.1364/AO.21.002996


View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of multiple scattering on the interpretation of the time dependence of elastic backscattering of laser pulses from the ocean (lidar) are investigated through solving the radiative transfer equation by Monte Carlo techniques. In particular, after removal of the geometric loss factors, it is found that the backscattered power is a decaying exponential function of time, over the time interval required for photons to travel four attenuation lengths through the water. The effective attenuation coefficient of this exponential decay is found to be strongly dependent on the parameters of the lidar system and on the optical properties of the water. The significant parameter is the ratio of the radius of the spot on the sea surface viewed by the lidar receiver optics to the mean free path of photons in the water. For values of this parameter near zero, the decay is determined by the beam attenuation coefficient, while for values greater than ~5–6, the decay is given by the attenuation coefficient for downwelling irradiance, often referred to as the diffuse attenuation coefficient. Between these two extremes the interpretation of the effective attenuation coefficient requires, essentially, complete knowledge of the inherent optical properties of the water: the beam attenuation coefficient and the volume scattering function.

© 1982 Optical Society of America

History
Original Manuscript: March 31, 1982
Published: August 15, 1982

Citation
Howard R. Gordon, "Interpretation of airborne oceanic lidar: effects of multiple scattering," Appl. Opt. 21, 2996-3001 (1982)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-21-16-2996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. R. Gower, Ed., Passive Radiometry of the Ocean (Reidel, Dordrecht, Holland, 1980).
  2. J. F. R. Gower, Ed., Oceanography from Space (Plenum, New York, 1981). [CrossRef]
  3. H. R. Gordon, Ed., Ocean Remote Sensing Using Lasers, NOAA Tech. Memo. ERL PMEL-18 (1980).
  4. K. L. Carder, Ed., “Oceanic Lidar,” NASA Conf. Publ. 2194 (1980).
  5. W. A. Hovis, K. C. Leung, Opt. Eng. 16, 153 (1977). [CrossRef]
  6. W. A. Hovis et al., Science 210, 60 (1980). [CrossRef] [PubMed]
  7. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980). [CrossRef] [PubMed]
  8. P. B. Mumola, O. Jarrett, C. A. Brown, “Multiwavelength Laser-Induced Fluorescence of Algae in-vivo: A New Remote Sensing Technique,” in Proceedings, Second Joint Conference on Sensing of Environmental Pollutants, Washington, D.C., 10–12 Dec. 1973 (Instrument Society of America, Pittsburgh, 1974), p. 53.
  9. M. Bristow, D. Nielsen, R. Furtek, “A Laser-Fluorosensor Technique for Water Quality Assessment,” in Proceedings, Thirteenth International Symposium on Remote Sensing of the Environment, 23–27 Apr. 1979 (Environmental Research Institute of Michigan, Ann Arbor, 1979), p. 397.
  10. F. H. Farmer, C. A. Brown, O. Jarrett, J. W. Campbell, W. Staton, “Remote Sensing of Phytoplankton Density and Diversity in Narraganset Bay Using an Airborne Fluorosensor,” in Proceedings, Thirteenth International Symposium on Remote Sensing of the Environment, 23–27 Apr. 1979 (Environmental Research Institute of Michigan, Ann Arbor, 1979), p. 1783.
  11. M. Bristow, D. Nielsen, D. Bundy, R. Furtek, Appl. Opt. 20, 2889 (1981). [CrossRef] [PubMed]
  12. G. D. Hickman, J. E. Hogg, Remote Sensing Environ. 1, 47 (1969). [CrossRef]
  13. H. H. Kim, Appl. Opt. 16, 46 (1977). [CrossRef] [PubMed]
  14. F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980). [CrossRef] [PubMed]
  15. R. L. Schwiesow, “Lidar High-Resolution Spectroscopy for Oceanographic Measurements,” in Ocean Remote Sensing Using Lasers, H. R. Gordon, Ed., NOAA Tech. Memo. ERL PMEL-18 (1980), p. 11.
  16. D. A. Leonard, B. Caputo, F. E. Hoge, Appl. Opt. 18, 1732 (1979). [CrossRef] [PubMed]
  17. J. G. Hirschberg, A. W. Wouters, J. D. Byrne, “Ocean Parameters Using the Brillouin Effect,” in Ocean Remote Sensing Using Lasers, H. R. Gordon, Ed. NOAA Tech. Memo. ERL PMEL-18 (1980), p. 29.
  18. F. E. Hoge, J. Opt. Soc. Am. 71, 1643 (1981).
  19. R. W. Preisendorfer, IUGG Monograph 10 (International Union of Geodesy and Geophysics, Paris, 1961), p. 11.
  20. G. W. Kattawar, G. N. Plass, Appl. Opt. 11, 662 (1972). [CrossRef] [PubMed]
  21. L. R. Poole, D. D. Venable, J. W. Campbell, Appl. Opt. 20, 3653 (1981). [CrossRef] [PubMed]
  22. G. Kullenberg, Deep Sea Res. 15, 423 (1968).
  23. H. R. Gordon, O. B. Brown, M. M. Jacobs, Appl. Opt. 14, 417 (1975). [CrossRef] [PubMed]
  24. K. S. Baker, R. C. Smith, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 60 (1979).
  25. H. R. Gordon, Appl. Opt. 19, 2092 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited