OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 21, Iss. 3 — Feb. 1, 1982
  • pp: 522–527

Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture

P. Belland and J. P. Crenn  »View Author Affiliations

Applied Optics, Vol. 21, Issue 3, pp. 522-527 (1982)

View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Gaussian beam weakly diffracted by a circular aperture can be approximated in the far field by another Gaussian beam with slightly different characteristics. Equations giving the intensity, the divergence, and the radius of the modified beam are derived in simple practical form for experimentalists. These approximated formulas show that, even in the case of negligible power losses through the aperture, the diffracted beam characteristics may appreciably differ from those of the incident beam. In a first approximation, diffraction effects may be ignored only if the ratio a/r0 of the aperture radius a to the 1/e intensity beam radius r0 in the aperture plane is larger than 3.

© 1982 Optical Society of America

Original Manuscript: June 26, 1981
Published: February 1, 1982

P. Belland and J. P. Crenn, "Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture," Appl. Opt. 21, 522-527 (1982)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).
  2. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  3. P. Belland, D. Véron, L. B. Whitbourn, J. Phys. D 8, 2113 (1975). [CrossRef]
  4. P. Belland, Thèse de Doctorat d’Etat, Université de Paris VI, CNRS AO 1215 (Nov.1975); also, Report EUR-CEA-FC-806 (Jan.1976).
  5. J. J. Degnan, Appl. Phys. 11, 1 (1976). [CrossRef]
  6. J. F. Kauffman, IEEE Trans. Antennas Propag. AP-13, 473 (1965). [CrossRef]
  7. A. L. Buck, Proc. IEEE 55, 448 (1967). [CrossRef]
  8. J. P. Campbell, L. G. DeShazer, J. Opt. Soc. Am. 59, 1427 (1969). [CrossRef]
  9. G. O. Olaofe, J. Opt. Soc. Am. 60, 1654 (1970). [CrossRef]
  10. R. G. Schell, G. Tyras, J. Opt. Soc. Am. 61, 31 (1971). [CrossRef]
  11. K. Tanaka, M. Shibukawa, O. Fukumitsu, IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972). [CrossRef]
  12. B. J. Klein, J. J. Degnan, Appl. Opt. 13, 2134 (1974). [CrossRef] [PubMed]
  13. T. Takenaka, M. Kakeya, O. Fukumitsu, J. Opt. Soc. Am. 70, 1323 (1980). [CrossRef]
  14. L. D. Dickson, Appl. Opt. 9, 1854 (1970). [CrossRef] [PubMed]
  15. D. Véron, Submillimeter Interferometry of High Density Plasmas, in Infrared and Millimeter Waves, Vol. 2 (Academic, New York, 1979), Chap. 2.
  16. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1970), p. 391.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited