OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 21, Iss. 9 — May. 1, 1982
  • pp: 1541–1553

Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson  »View Author Affiliations

Applied Optics, Vol. 21, Issue 9, pp. 1541-1553 (1982)

View Full Text Article

Enhanced HTML    Acrobat PDF (1800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aerosol and cloud measurements are simulated for a space shuttle lidar. Expected errors (in signal, transmission, density, and calibration) are calculated algebraically and checked by simulating measurements and retrievals using random number generators. Vertical resolution is 0.1–0.5 km in the troposphere, 0.5–2.0 km above, except 0.25–1.0 km in mesospheric cloud and aerosol layers. Horizontal resolution is 100–2000 km. By day vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 μm) as well as strong volcanic stratospheric aerosols (at 0.53 μm). Quantitative backscatter is retrieved provided that particulate optical depth does not exceed ∼0.3. By night all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 μm), mesospheric aerosols (at 0.53 μm), and noctilucent clouds (at 1.06 and 0.53 μm). Molecular density is a leading source of error in measuring nonvolcanic stratospheric and upper tropospheric aerosols.

© 1982 Optical Society of America

Original Manuscript: September 28, 1981
Published: May 1, 1982

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson, "Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique," Appl. Opt. 21, 1541-1553 (1982)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Evans, “Remote Probing of High Cloud Cover via Satellite-Borne Lidar,” NASA Contract. Rep. 96893 (1968).
  2. S. T. Shipley et al., “The Evaluation of a Shuttle Borne Lidar Experiment to Measure the Global Distribution of Aerosols and Their Effect on the Atmospheric Heat Budget,” Dept. of Meteorology, U. of Wisc., Madison 53706 (April1975),NASA Contract. Rep. 146134 (1975).
  3. R. T. H. Collis, R. D. Hake, P. B. Russell, S. A. Bowhill, Opt. Eng. 17, 23 (1978). [CrossRef]
  4. R. V. Greco, “Atmospheric Lidar Multi-User Instrument System Definition Study,” Final Report, General Electric Space Division to NASA Langley Research Center (1979).The eye safety guidelines in this report assume the ANSI criteria for maximum permissible ocular exposure viewed with the naked eye by day and a 10-in. telescope by night and with multiplicative safety factors of 10, 3, and 2 for scintillation hot spots, multimode laser beam inhomogeneities, and Gaussian beam shape, respectively. The first safety factor should be used in conjunction with either the second or third but not both.
  5. “Shuttle Atmospheric Lidar Research Program,” Final Report of the Atmospheric Lidar Working Group, NASA Spec. Publ. 433 (NTIS, Springfield, Va., 1979).
  6. P. B. Russell, B. M. Morley, Appl. Opt. 21, 1554 (1982). [CrossRef] [PubMed]
  7. P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979). [PubMed]
  8. G. Fiocco, G. W. Grams, J. Geophys. Res. 74, 2453 (1969). [CrossRef]
  9. G. S. Kent, B. R. Clemesha, R. W. Wright, J. Atmos. Terr. Phys. 29, 169 (1967). [CrossRef]
  10. B. R. Clemesha, Y. Nakamura, Nature 237, 328 (1972). [CrossRef]
  11. B. R. Clemesha, D. M. Simonich, J. Geophys. Res. 83, 2403 (1978). [CrossRef]
  12. D. J. Gambling, K. Bartusek, W. G. Elford, J. Atmos. Terr. Phys. 33, 1403 (1971). [CrossRef]
  13. R. W. Fegley, H. T. Ellis, Appl. Opt. 14, 1751 (1975). [CrossRef] [PubMed]
  14. T. Itabe, M. Fujiwara, M. Hirono, J. Meteorol. Soc. Jpn. 55, 606 (1977).
  15. F. G. Fernald, B. G. Schuster, J. Geophys. Res. 82, 433 (1977). [CrossRef]
  16. M. P. McCormick, T. J. Swissler, W. P. Chu, W. H. Fuller, J. Atmos. Sci. 35, 1296 (1978). [CrossRef]
  17. R. Reiter, H. Jager, W. Carnuth, W. Funk, Geophys. Res. Lett. 1, 1099 (1980). [CrossRef]
  18. P. B. Russell, R. D. Hake, J. Atmos. Sci. 34, 163 (1977). [CrossRef]
  19. D. J. Gambling, K. Bartusek, Atmos. Environ. 6, 181 (1972). [CrossRef]
  20. P. B. Russell, J. M. Livingston, E. E. Uthe, J. Atmos. Sci. 36, 1588 (1979).
  21. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” Final Report contract NAS1-16052, SRI Project 1215, SRI International, Menlo Park, Calif. 94025 to NASA Langley Research Center, Hampton, Va. 23665.NASA Contract. Rep. 3473 (1981).
  22. M. P. Thekaekera, Appl. Opt. 13, 518 (1974). [CrossRef]
  23. W. E. Evans, “Design of an Airborne Lidar for Stratospheric Aerosol Measurements,” Final Report 5557, NASA contract NAS1-14520, SRI International, Menlo Park, Calif.,NASA Contract. Rep. 145179 (1977).
  24. J. Laver, “Approach for Estimating Errors in Density Profiles,” Appendix D of SAGE Ground Truth Plan, NASA Tech. Memo. 80076 (1979).
  25. A. T. Young, Appl. Opt. 19, 3427 (1980). [CrossRef] [PubMed]
  26. J. F. Nixon, E. C. Whipple, R. S. Hyde, J. Geophys. Res. 84, 5047 (1979). [CrossRef]
  27. R. D. Hudson, “Chlorofluoromethanes and the Stratosphere,” NASA Republ. 1010, (1977), p. 31.[Original reference: A. M. Bass, A. L. Ledford, A. H. Laufer, J. Res. Natl. Bur. Stand. Sect. A 80, 143 (1976).] [CrossRef]
  28. W. E. Evans, “Evaluation of a Near-Infrared Photomultiplier for Airborne Lidar Applications,” Final Report 6919, NASA contract NAS1-14520, SRI International, Menlo Park, Calif. (1978)NASA Contract. Rep. 145380 (1978).
  29. G. Fiocco, G. W. Grams, Tellus 18, 34 (1966). [CrossRef]
  30. G. Fiocco, G. W. Grams

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited