OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 10 — May. 15, 1983
  • pp: 1551–1554

Electron–photon coincidence technique for the absolute calibration of VUV detectors

R. McAdams and S. K. Srivastava  »View Author Affiliations

Applied Optics, Vol. 22, Issue 10, pp. 1551-1554 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is described whereby VUV photon detectors can be accurately calibrated. This method is illustrated by taking the 58.4-nm transition of He as an example. The technique consists of crossing a monoenergetic electron beam with a beam of He atoms. When inelastically scattered electrons which have excited the 21P state are detected in coincidence with the 58.4-nm photons emitted in the decay of the excited state, the interaction volume formed by the crossed beams constitutes a standard source of photons. By comparing the number of detected coincidences with the predicted number the calibration can be made. A total detector efficiency of 0.024 ± 0.003 is obtained for a Galileo 4830 channeltron.

© 1983 Optical Society of America

Original Manuscript: January 22, 1983
Published: May 15, 1983

R. McAdams and S. K. Srivastava, "Electron–photon coincidence technique for the absolute calibration of VUV detectors," Appl. Opt. 22, 1551-1554 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. L. Weissler, S. K. Srivastava, Space Optics (National Academy of Sciences, Washington, D.C., 1974), p. 772.
  2. W. R. Ott, “NBS Ultraviolet Radiometric Standards,” Natl. Bur. Stand. U.S. Spec. Rep. NBS SP456 (1976), p. 107. See also the following additional publications by the NBS group: L. R. Canfield, R. G. Johnston, R. P. Madden, Appl. Opt. 12, 1611 (1973); J. M. Bridges, W. R. Ott, Appl. Opt. 16, 367 (1970); R. D. Saunders, W. R. Ott, J. M. Bridges, Appl. Opt. 17, 593 (1978). [CrossRef] [PubMed]
  3. J. F. Williams, Physics of Ionized Gases (U. Ljubljana, Yugoslavia, 1976), p. 217.
  4. T. Sasaki, T. Oda, H. Sugawara, Appl. Opt. 16, 3115 (1977). [CrossRef] [PubMed]
  5. M. T. Hollywood et al., J. Phys. B 12, 819 (1979). [CrossRef]
  6. R. McAdams et al., J. Phys. B 13, 3691 (1980). [CrossRef]
  7. R. McAdams, Ph.D. Thesis, Queens U. Belfast, Northern Ireland (unpublished, 1982).
  8. J. Macek, J. D. Jaecks, Phys. Rev. A 4, 2288 (1971). [CrossRef]
  9. K. Blum, H. Kleinpoppen, Phys. Rep. 52, 403 (1979). [CrossRef]
  10. M. Eminyan et al., J. Phys. B 7, 1519 (1974). [CrossRef]
  11. J. Slevin et al., J. Phys. B 13, 3009 (1980). [CrossRef]
  12. N. C. Steph, D. E. Golden, Phys. Rev. A 21, 1848 (1980). [CrossRef]
  13. A. Crowe, J. C. Nogueira, J. Phys. B 15, L501 (1982). [CrossRef]
  14. H. B. van Linden van den Heuwell et al., J. Phys. B 14, 2667 (1981). [CrossRef]
  15. L. D. Thomas et al., J. Phys. B 7, 1719 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited