OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 12 — Jun. 15, 1983
  • pp: 1898–1909

Thomas point process in pulse, particle, and photon detection

Kuniaki Matsuo, Malvin Carl Teich, and Bahaa E. A. Saleh  »View Author Affiliations

Applied Optics, Vol. 22, Issue 12, pp. 1898-1909 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiplication effects in point processes are important in a number of areas of electrical engineering and physics. We examine the properties and applications of a point process that arises when each event of a primary Poisson process generates a random number of subsidiary events with a given time course. The multiplication factor is assumed to obey the Poisson probability law, and the dynamics of the time delay are associated with a linear filter of arbitrary impulse response function; special attention is devoted to the rectangular and exponential case. Primary events are included in the final point process, which is expected to have applications in pulse, particle, and photon detection. We refer to this as the Thomas point process since the counting distribution reduces to the Thomas distribution in the limit of long counting times. Explicit results are obtained for the singlefold and multifold counting statistics (distribution of the number of events registered in a fixed counting time), the time statistics (forward recurrence time and interevent probability densities), and the counting correlation function (noise properties). These statistics can provide substantial insight into the underlying physical mechanisms generating the process. An example of the applicability of the model is provided by betaluminescence photons produced in a glass photomultiplier tube, when Cherenkov events are also present.

© 1983 Optical Society of America

Original Manuscript: January 14, 1983
Published: June 15, 1983

Kuniaki Matsuo, Malvin Carl Teich, and Bahaa E. A. Saleh, "Thomas point process in pulse, particle, and photon detection," Appl. Opt. 22, 1898-1909 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962).
  2. D. L. Snyder, Random Point Processes (Wiley-Interscience, New York, 1975).
  3. D. R. Cox, J. R. Stat. Soc. B 17, 129 (1955).
  4. M. S. Bartlett, Biometrika 51, 299 (1964).
  5. A. J. Lawrance, “Some Models for Stationary Series of Univariate Events,” in Stochastic Point Processes: Statistical Analysis, Theory, and Applications, P. A. W. Lewis, Ed. (Wiley-Interscience, New York, 1972), pp. 199–256.
  6. M. C. Teich, B. E. A. Saleh, Phys. Rev. A 24, 1651 (1981). [CrossRef]
  7. M. C. Teich, B. E. A. Saleh, J. Opt. Soc. Am. 71, 771 (1981). [CrossRef]
  8. B. E. A. Saleh, M. C. Teich, Proc. IEEE 70, 229 (1982). [CrossRef]
  9. J. Neyman, Ann. Math. Stat. 10, 35 (1939). [CrossRef]
  10. J. Neyman, E. L. Scott, J. R. Stat. Soc. B 20, 1 (1958).
  11. M. C. Teich, Appl. Opt. 20, 2457 (1981). [CrossRef] [PubMed]
  12. B. E. A. Saleh, M. C. Teich, “Statistical properties of a non-stationary Neyman-Scott cluster process,” IEEE Trans. Inf. Theory, to be published (November1983). [CrossRef]
  13. G. Vannucci, M. C. Teich, J. Opt. Soc. Am. 71, 164 (1981). [CrossRef]
  14. B. E. A. Saleh, J. T. Tavolacci, M. C. Teich, IEEE J. Quantum Electron. QE-17, 2341 (1981). [CrossRef]
  15. B. E. A. Saleh, D. Stoler, M. C. Teich, Phys. Rev. A 27, 360 (1983). [CrossRef]
  16. K. Matsuo, B. E. A. Saleh, M. C. Teich, J. Math. Phys. 23, 2353 (1982). [CrossRef]
  17. M. Thomas, Biometrika 36, 18 (1949). [PubMed]
  18. R. E. Burgess, Discuss. Faraday Soc. 28, 151 (1959). [CrossRef]
  19. L. Mandel, Br. J. Appl. Phys. 10, 233 (1959). [CrossRef]
  20. M. C. Teich, B. E. A. Saleh, Opt. Lett. 7, 365 (1982). [CrossRef] [PubMed]
  21. A. van der Ziel, Noise in Measurements (Wiley-Interscience, New York, 1976).
  22. B. E. A. Saleh, Photoelectron Statistics (Springer, New York, 1978).
  23. D. Gross, C. M. Harris, Fundamentals of Queuing Theory (Wiley, New York, 1974).
  24. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965).
  25. The analogous result for the SNDP, represented in Eq. (49) of Ref. 8, is incorrect. The correct result is P2SNDP(τ)=1α{μ∫-∞∞h(t) exp[-hτ(t)]dt·∫-∞∞h(t+τ)× exp[-hτ(t)]dt+ ∫-∞∞h(t)h(t+τ) exp[-hτ(t)]dt}·exp(μ ∫-∞∞{exp[-hτ(t)]-1}dt). The graphical result for the SNDP, presented in Fig. 11 of Ref. 8, is correct, however.
  26. J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, Elmsford, N.Y., 1964).
  27. W. Viehmann, A. G. Eubanks, “Noise Limitations of Multiplier Phototubes in the Radiation Environment of Space,” NASA Tech. Note D-8147 (Goddard Space Flight Center, Greenbelt, Md., Mar.1976).
  28. W. Viehmann, A. G. Eubanks, F. G. Pieper, J. H. Bredekamp, Appl. Opt. 14, 2104 (1975). [CrossRef] [PubMed]
  29. E. N. Gilbert, H. O. Pollak, Bell Syst. Tech. J. 39, 333 (1960).
  30. K. Matsuo, M. C. Teich, B. E. A. Saleh, “Poisson branching point processes,” in preparation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited