OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 20 — Oct. 15, 1983
  • pp: 3242–3248

Achromatic and sharp real imaging of a point by a single aspheric lens

Günter Schulz  »View Author Affiliations

Applied Optics, Vol. 22, Issue 20, pp. 3242-3248 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By a single lens (two refracting surfaces, one dispersive medium) an achromatic real point image can be obtained. We show how such a lens brings a large aperture bundle of axial-parallel rays to the same sharp focus for two wavelengths, that is, for two refractive-index values. The normal of one of the two refracting surfaces is, in general, discontinuous at the axis. The numerical aperture which is practically attainable can be enhanced by off-axis steps in the refracting surfaces. The design principles for such lenses, computational formulas, and examples of results are given. Limitations and further possibilities are discussed.

© 1983 Optical Society of America

Original Manuscript: March 7, 1983
Published: October 15, 1983

Günter Schulz, "Achromatic and sharp real imaging of a point by a single aspheric lens," Appl. Opt. 22, 3242-3248 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950), p. 80;M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), p. 231;W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, London, 1974), p. 173;C. Hofmann, Die optische Abbildung (Geest & Portig, Leipzig, 1980), p. 241.
  2. R. Riekher, Fernrohre und ihre Meister (Verlag Technik, Berlin, 1957), p. 87;M. Herzberger, Modern Geometrical Optics (Inter-science, New York, 1958), p. 112.
  3. K. Schwarzschild, Astr. Mitt. Kgl. Sternw. Göttingen 11, 14 (1905).
  4. R. D. Sigler, Appl. Opt. 21, 2804 (1982). [CrossRef] [PubMed]
  5. V. I. Kreopalov, N. L. Sokolov, Opt. Spektrosk. 53, 743 (1982)[Opt. Spectrosc. 53, 441 (1982)].
  6. S. Czapski, O. Eppenstein, Grundzüge der Theorie der optischen Instrumente (Johann Ambrosius Barth, Leipzig, 1924), p. 290.
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), p. 197.
  8. G. Schulz, Opt. Commun. 41, 315 (1982). [CrossRef]
  9. J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The Theory of splines and Their Applications (Academic, New York, 1967), p. 11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited