OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 22 — Nov. 15, 1983
  • pp: 3593–3598

Superresolution of Fourier transform spectroscopy data by the maximum entropy method

S. Kawata, K. Minami, and S. Minami  »View Author Affiliations


Applied Optics, Vol. 22, Issue 22, pp. 3593-3598 (1983)
http://dx.doi.org/10.1364/AO.22.003593


View Full Text Article

Enhanced HTML    Acrobat PDF (793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The maximum entropy method (MEM) is applied to the interferogram data obtained using the technique of Fourier transform spectroscopy for estimating its spectrum with a resolution far exceeding the value set by the spectrometer. For emission line data, the MEM process is directly used with the interferogram data in place of the regular Fourier transformation process required in Fourier transform spectroscopy. It produces a spectral estimate with an enhanced resolution. For absorption data with a broad background spectrum, the method is applied to a modified interferogram which corresponds to the Fourier transform of the absorptance spectrum. Two results are presented to demonstrate the power of the technique: for the visible emission spectrum of a spectral, calibration lamp and for the infrared chloroform absorption spectrum. Included in the paper is a discussion of the problems associated with practical use of the MEM.

© 1983 Optical Society of America

History
Original Manuscript: May 20, 1983
Published: November 15, 1983

Citation
S. Kawata, K. Minami, and S. Minami, "Superresolution of Fourier transform spectroscopy data by the maximum entropy method," Appl. Opt. 22, 3593-3598 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-22-3593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics, Vol. VI, E. Wolf Ed. (North Holland, Amsterdam, 1967).
  2. J. L. Harris, J. Opt. Soc. Am. 54, 931 (1964). [CrossRef]
  3. D. Slepian, H. O. Pollak, Bell Syst. Tech. J. 40, 43 (1961).
  4. R. W. Gerchberg, Opt. Acta 21, 709 (1974). [CrossRef]
  5. A. Papoulis, IEEE Trans. Circuits Syst. CAS-22, 735 (1975). [CrossRef]
  6. P. A. Jansson, R. H. Hunt, E. K. Plyler, J. Opt. Soc. Am. 60, 596 (1970). [CrossRef]
  7. S. Kawata, Y. Ichioka, J. Opt. Soc. Am. 70, 762 (1980). [CrossRef]
  8. K. C. Tarn, V. Perez-Mendez, J. Opt. Soc. Am. 71, 582 (1981). [CrossRef]
  9. S. Haykin, S. Kesler, “Prediction-Error Filtering and Maximum Entropy Spectral Estimation,” in Nonlinear Methods of Spectral Analysis, S. Haykin, Ed. (Springer, Berlin, 1979). [CrossRef]
  10. Special issue on spectral estimation, Proc. IEEE 70, No. 9 (1982).
  11. B. R. Frieden, J. Opt. Soc. Am. 62, 511 (1972). [CrossRef] [PubMed]
  12. R. P. Vasquez, J. D. Klein, J. J. Barton, F. J. Grunthaner, J. Electron Spectrosc. 23, 63 (1981). [CrossRef]
  13. T. Okamoto, S. Kawata, S. Minami, “Fourier Transform Spectrometer with a Self-Scanning Photodiode Array,” submitted to Appl. Opt.
  14. H. J. Caulfield, “Holographic Spectroscopy,” in Advances in Holography, N. Farhat, Ed. (Marcel Dekker, New York, 1976), Vol. 2.
  15. Ref. 9, Chap. 2.9.
  16. T. J. Ulrych, M. Ooe, “Autoregressive and Mixed Autoregressive-Moving Average Models and Spectra,” in Nonlinear Methods of Spectral Analysis, S. Haykin, Ed. (Springer, Berlin, 1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited