OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 23 — Dec. 1, 1983
  • pp: 3759–3770

Differential absorption lidar technique for measurement of the atmospheric pressure profile

C. Laurence Korb and Chi Y. Weng  »View Author Affiliations


Applied Optics, Vol. 22, Issue 23, pp. 3759-3770 (1983)
http://dx.doi.org/10.1364/AO.22.003759


View Full Text Article

Enhanced HTML    Acrobat PDF (1710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal path pressure measurements is given with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to 2 orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated vertical path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1– 0.3% accuracy for ground and Shuttle-based pressure profile and surface pressure experiments.

© 1983 Optical Society of America

History
Original Manuscript: March 1, 1983
Published: December 1, 1983

Citation
C. Laurence Korb and Chi Y. Weng, "Differential absorption lidar technique for measurement of the atmospheric pressure profile," Appl. Opt. 22, 3759-3770 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-23-3759


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. WMO-ICSU Joint Organizing Committee, “The First GARP Global Experiment—Objective and Plans,” GARP Publ. Ser. 11 (World Meteorological Organization—International Council of Scientific Unions, Geneva1973).
  2. D. Atlas, C. L. Korb, Bull. Am. Meteorol. Soc. 62, 1270 (1981). [CrossRef]
  3. G. Yamamoto, D. Q. Wark, J. Geophys. Res. 66, 3596 (1961). [CrossRef]
  4. D. Q. Wark, D. M. Mercer, Appl. Opt. 4, 839 (1965). [CrossRef]
  5. S. F. Singer, Appl. Opt. 7, 1125 (1968). [CrossRef] [PubMed]
  6. C. L. Korb in Proceedings, Eighth Laser Radar Conference, Philadelphia, Pa. (American Meteorological Society, Boston, 1977).
  7. C. L. Korb, J. E. Kalshoven, C. Y. Weng, “A Lidar Technique for the Measurement of Atmospheric Pressure Profiles,” Trans. Am. Geophys. Union 60, 333 (1979), Spring Meeting, Washington, D.C. (May-June, 1979).
  8. G. Megie, Appl. Opt. 19, 34 (1980). [CrossRef] [PubMed]
  9. J. E. Kalshoven, C. L. Korb, J. Opt. Soc. Am. 72, 1801A (1982).
  10. G. E. Peckham, D. A. Flower, “A Microwave Pressure Sounder,” in Dig. Int. Geosci. Remote Sens. Symp., Washington(IGARSS 1981)IEEE Catalog No. 81Ch1656-8, pp. 46–51.
  11. C. S. Gardner, Appl. Opt. 18, 3184 (1979). [CrossRef] [PubMed]
  12. P. B. Russell, B. M. Morley, Appl. Opt. 21, 1554 (1982). [CrossRef] [PubMed]
  13. D. E. Burch, D. A. Gryvnak, Appl. Opt. 8, 1493 (1969). [CrossRef] [PubMed]
  14. G. Schwemmer, M. Dombrowski, C. L. Korb, in Proceedings, Eleventh Laser Radar Conference, Madison, Wisc. (American Meteorological Society, Boston, 1982), p. 26.
  15. C. L. Sam, J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O'Dell, Adv. Laser Eng. Appl. 247, 130 (1980). [CrossRef]
  16. R. T. H. Collis, Adv. Geophys. 13, 113 (1969). [CrossRef]
  17. E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183, 2.1 (1975).
  18. C. L. Korb, C. Y. Weng, J. Appl. Meteorol. 21, 1346 (1982). [CrossRef]
  19. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974). [CrossRef]
  20. C. L. Korb, C. Y. Weng, “Effective Frequency for Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” Opt. Lett.; submitted for publication.
  21. G. N. Plass, D. I. Fivel, Astrophys. J. 117, 225 (1953). [CrossRef]
  22. C. L. Korb, J. E. Kalshoven, G. K. Schwemmer, M. Dombrowski, in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements, Sarasota, FL (Optical Society of America, Washington, D.C., 1980), TuP 20-1.
  23. C. L. Korb, R. H. Hunt, E. K. Plyler, J. Chem. Phys. 48, 4252 (1968). [CrossRef]
  24. R. A. McClatchey et al., Environmental Research Paper 434, AFCRL-TR-73-0096 (Air Force Cambridge Research Laboratories, Bedford, Mass., Jan.1959);L. S. Rothman, Appl. Opt. 20, 791 (1981). [CrossRef] [PubMed]
  25. L. Elterman, “Ultraviolet, visible and infrared attenuation for altitudes to 50 km,” Environmental Research Paper 285, AFCRL-68-0153 (Air Force Cambridge Research Laboratories, Bedford, Mass, April, 1968).
  26. NASA, Shuttle Atmospheric Lidar Research Program, SP-433Washington, D.C. (1979), 220 pp.
  27. J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, Appl. Opt. 20, 1967 (1981). [CrossRef] [PubMed]
  28. W. B. Grant, Appl. Opt. 21, 2390 (1982). [CrossRef] [PubMed]
  29. J. W. Goodman, Proc. IEEE 53, 1688 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited