OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 4 — Feb. 15, 1983
  • pp: 619–621

Photometric measurement of linear crystallization velocity on a microscale

L. J. Soltzberg, Yvette M. Dick, and Jody M. Stowe  »View Author Affiliations

Applied Optics, Vol. 22, Issue 4, pp. 619-621 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Use of a photometer-equipped polarizing microscope permits the measurement of linear crystallization velocity in a flexible manner. Ease of sample preparation and manipulation compared with conventional methods for measuring crystallization velocity are among the advantages of the method reported here. A simple barrier layer silicon photodetector in short-circuit operation gives the fast response necessary to follow the moving solid–liquid interface. Sample results on the crystallization of α- and β-resorcinol illustrate the utility of this method.

© 1983 Optical Society of America

Original Manuscript: October 21, 1982
Published: February 15, 1983

L. J. Soltzberg, Yvette M. Dick, and Jody M. Stowe, "Photometric measurement of linear crystallization velocity on a microscale," Appl. Opt. 22, 619-621 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gernez, C.R. Acad. Sci. 95, 1278 (1982); C.R. Acad. Sci. 97, 1298, 1366, 1433 (1884).
  2. G. Tammann, States of Aggregation, translated by R. F. Mehl (Van Nostrand, Princeton, N.J., 1925).
  3. J. W. Cahn, W. B. Hillig, G. W. Sears, Acta Metall. 12, 1421 (1964). [CrossRef]
  4. R. F. Strickland-Constable, Kinetics and Mechanism of Crystallization (Academic, London, 1968), pp. 271–275.
  5. I. N. Fridlyander, in Growth of Crystals, Vol. 1, A. V. Shubnikov, N. N. Sheftal, Eds. (Consultants Bureau, New York, 1959), pp. 142–149.
  6. D. Kirtisinghe, Ph.D. Thesis, London U. (1964); see also Ref. 4.
  7. V. T. Borisov, in Growth of Crystals, Vol. 3, A. V. Shubnokov, N. N. Sheftal, Eds. (Consultants Bureau, New York, 1962), pp. 135–137.
  8. R. E. Powell, T. S. Gilman, J. H. Hildebrand, J. Am. Chem. Soc. 73, 2525 (1951). [CrossRef]
  9. J. B. Hudson, W. B. Hillig, R. M. Strong, J. Phys. Chem. 63, 1012 (1959). [CrossRef]
  10. W. B. Hillig, in Growth and Perfection of Crystals, R. H. Doremus, B. W. Roberts, D. Turnbull, Eds. (Wiley, New York, 1958), pp. 350–360.
  11. L. J. Soltzberg, S. J. Bobrowski, P. A. Parziale, E. C. Armstrong, V. E. Cohn, J. Chem. Phys. 71, 1652 (1979). [CrossRef]
  12. L. J. Soltzberg, S. M. Cannon, C. A. Clarke, Y. W. Ho, Appl. Opt. 20, 670 (1981). [CrossRef] [PubMed]
  13. P. G. Witherell, M. E. Faulhaber, Appl. Opt. 9, 73 (1970). [CrossRef] [PubMed]
  14. The actual function is the area enclosed by a circle and its chord as the chord moves at a constant rate perpendicular to the normal diameter of the circle. That is,A(x)=∫−rx(r2−x2)1/2dx,where r is the radius of the circle (the microscope field) and x is the position of the moving interface. Then, A(x) = ½[x(r2 − x2)1/2 + r2sin−1(x/r)] + πr2/4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited