OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 5 — Mar. 1, 1983
  • pp: 682–689

Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar

D. K. Killinger, N. Menyuk, and W. E. DeFeo  »View Author Affiliations


Applied Optics, Vol. 22, Issue 5, pp. 682-689 (1983)
http://dx.doi.org/10.1364/AO.22.000682


View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pulsed dual-wavelength dual-CO2-laser differential-absorption lidar (DIAL) system has been developed which permits simultaneous heterodyne and direct detection of the same lidar returns. This system has been used to make an experimental comparison of the SNRs and statistical and temporal characteristics of the DIAL returns from several topographic targets. These results were found to be in general agreement with theory and were used to quantify the relative merits of the two detection techniques. The measured parameter values were applied to an analytical treatment to predict system trade-offs for the remote sensing of atmospheric species, with application to both path-averaged and range-resolved measurements.

© 1983 Optical Society of America

History
Original Manuscript: October 8, 1982
Published: March 1, 1983

Citation
D. K. Killinger, N. Menyuk, and W. E. DeFeo, "Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar," Appl. Opt. 22, 682-689 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-5-682


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Byer, Opt. Quantum Electron. 17, 147 (1975). [CrossRef]
  2. J. L. Bufton, R. W. Stewart, C. Weng, Appl. Opt. 18, 3363 (1979). [CrossRef] [PubMed]
  3. E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978). [CrossRef] [PubMed]
  4. K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979). [CrossRef]
  5. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981); R. T. Menzies, M. S. Shumate, Appl. Opt. 15, 2080 (1976). [CrossRef] [PubMed]
  6. W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977). [CrossRef]
  7. S. Lundqvist, C. O. Faelt, U. Persson, B. Marthinsson, S. T. Eng, Appl. Opt. 20, 2534 (1981). [CrossRef] [PubMed]
  8. R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64, Oct.1980.
  9. P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.
  10. B. J. Rye, Appl. Opt. 17, 3862 (1978). [CrossRef] [PubMed]
  11. N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980). [CrossRef]
  12. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981). [CrossRef]
  13. D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 174 (1981); D. L. Spears, “IR Detectors: Heterodyne and Direct,” Technical Digest of Workshop on Optical and Laser Remote Sensing, Monterey, 9–11 Feb. (1982).
  14. R. A. Brandewie, W. C. Davis, Appl. Opt. 11, 1526 (1972). [CrossRef] [PubMed]
  15. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).
  16. J. Y. Wang, Appl. Opt. 21, 464 (1982). [CrossRef] [PubMed]
  17. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981). [CrossRef] [PubMed]
  18. C. M. McIntyre, M. H. Lee, J. H. Churnside, J. Opt. Soc. Am. 70, 1084 (1980). [CrossRef]
  19. J. F. Holmes, M. H. Lee, J. R. Kerr, J. Opt. Soc. Am. 70, 355 (1980). [CrossRef]
  20. S. F. Clifford, R. J. Hill, J. Opt. Soc. Am. 71, 112 (1981). [CrossRef]
  21. E. Jakeman, P. N. Pusey, Phys. Rev. Lett. 40, 546 (1978). [CrossRef]
  22. J. H. Shapiro, B. A. Capron, R. C. Harney, Appl. Opt. 20, 3292 (1981); J. H. Shapiro, “Target Detection with a Direct-Detection Optical Radar,” Project Report TST-27, MIT Lincoln Laboratory, Nov.1978, ADA No. 065 627. [CrossRef] [PubMed]
  23. For a negative exponential distribution, the value of the standard deviation equals that of the mean; therefore, the normalized standard deviation is 1. This is equivalent to the statement that the SNR = 1 since, as in Ref. (22), the voltage SNR may be defined as the ratio of the mean value divided by the standard deviation.
  24. N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981). [CrossRef] [PubMed]
  25. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.
  26. G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), p. 100; N. George, A. Jain, Appl. Phys. 4, 201 (1974). [CrossRef]
  27. D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981). [CrossRef]
  28. N. Menyuk, D. K. Killinger, C. R. Menyuk (to be submitted for publication, Appl. Opt.)
  29. N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982). [CrossRef] [PubMed]
  30. N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982). [CrossRef] [PubMed]
  31. A. Mayer, J. Comera, H. Charpenties, C. Jaussaud, Appl. Opt. 17, 391 (1978). [CrossRef] [PubMed]
  32. R. J. Hull, MIT Lincoln Laboratory; private communication; CO2 lidar range-resolved heterodyne detection of atmospheric aerosols.
  33. J. L. Bufton, NASA Goddard; private communication; CO2 lidar range-resolved direct detection of atmospheric aerosols.
  34. Detector arrays may be used in heterodyne-detection lidar to reduce the effects of speckle-induced fluctuations. For the case of an optimized detection system as in Refs. 8 and 9, the reduction in σn2 is predicted to be offset by a corresponding decrease in SNR; however, for a lidar system in which σn is dominated by atmospheric effects rather than being related to SNR, relative detection advantages can be gained from the use of a detector array.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited