OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 5 — Mar. 1, 1983
  • pp: 718–720

Absorption of 9.6-μm CO2 laser radiation by CO2 at elevated temperatures

A. M. Robinson  »View Author Affiliations


Applied Optics, Vol. 22, Issue 5, pp. 718-720 (1983)
http://dx.doi.org/10.1364/AO.22.000718


View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absorption of 9.6-μm CO2 laser radiation by CO2 at temperatures between 296 and 625 K has been measured at a pressure of 200 Torr. Experimental results for the R10—R26 and P10—P28 transitions have been obtained and compared with computed values of absorption. The relative optical broadening coefficients due to He and N2 have been measured on the R16—R22 and P16—P22 transitions over the same temperature range.

© 1983 Optical Society of America

History
Original Manuscript: October 12, 1982
Published: March 1, 1983

Citation
A. M. Robinson, "Absorption of 9.6-μm CO2 laser radiation by CO2 at elevated temperatures," Appl. Opt. 22, 718-720 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-5-718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ely, T. K. McCubbin, Appl. Opt. 9, 1230 (1970). [CrossRef] [PubMed]
  2. S. A. Munjee, W. H. Christiansen, Appl. Opt. 12, 993 (1973). [CrossRef] [PubMed]
  3. R. L. Leonard, Appl. Opt. 13, 1920 (1974). [CrossRef] [PubMed]
  4. A. R. Strilchuk, A. A. Offenberger, Appl. Opt. 13, 2643 (1974). [CrossRef] [PubMed]
  5. A. M. Robinson, N. Sutton, Appl. Opt. 16, 2632 (1977). [CrossRef] [PubMed]
  6. A. M. Robinson, N. Sutton, Appl. Opt. 18, 378 (1979). [CrossRef] [PubMed]
  7. A. M. Robinson, E. F. Girczyc, Appl. Opt. 19, 1969 (1980). [CrossRef] [PubMed]
  8. A good review of calculations of gain and absorption in CO2 may be found in J. C. Goldstein, “Calculation of Small Signal Gain Coefficients in CO2,” Los Alamos Scientific Laboratory report LA-UR-79-1149 (1979).
  9. A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975). [CrossRef]
  10. P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978). [CrossRef]
  11. C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).
  12. R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).
  13. C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).
  14. All CO2 energy levels are designated using the notation of the AFGL 1980 atmospheric absorption line parameters compilation, described in L. S. Rothman, Appl. Opt. 20, 791 (1981). [CrossRef] [PubMed]
  15. A. M. Robinson, J. Weiss, Can. J. Phys. 60, 1656 (1982). [CrossRef]
  16. C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980). [CrossRef]
  17. A. D. Devir, U. P. Oppenheim, Appl. Opt. 8, 2121 (1969). [CrossRef] [PubMed]
  18. E. R. Murray, C. Kruger, M. Mitchner, Appl. Phys. Lett. 24, 180 (1974). [CrossRef]
  19. J. Topping, Errors of Observation and Their Treatment (Chapman & Hall, London, 1972), pp. 73–74.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited