OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 5 — Mar. 1, 1983
  • pp: 721–725

Calculations of atmospheric refraction for spacecraft remote-sensing applications

William P. Chu  »View Author Affiliations


Applied Optics, Vol. 22, Issue 5, pp. 721-725 (1983)
http://dx.doi.org/10.1364/AO.22.000721


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

© 1983 Optical Society of America

History
Original Manuscript: May 17, 1982
Published: March 1, 1983

Citation
William P. Chu, "Calculations of atmospheric refraction for spacecraft remote-sensing applications," Appl. Opt. 22, 721-725 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-5-721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Goody, J. Atmos. Sci. 20, 502 (1963). [CrossRef]
  2. D. W. Goldsmith, Icarus 2, 341 (1963). [CrossRef]
  3. O. K. Garriott, J. Opt. Soc. Am. 69, 1064 (1979). [CrossRef]
  4. D. A. Graham, T. Ichikawa, J. S. Kim, Ann. Geophys. 25, 855 (1969).
  5. D. E. Snider, J. Atmos. Sci. 32, 2178 (1975). [CrossRef]
  6. D. W. Schuerman, F. Giovane, J. M. Greenberg, J. Appl. Meteorol. 14, 1182 (1975). [CrossRef]
  7. J. E. A. Selby, R. A. McClatchey, “Atmospheric Transmittance from 0.25 to 28.5 μm: Computer Code lowtran 2,” AFCRL-TR-72-0745, AD 763 721, 1972.
  8. D. A. Thompson, T. J. Pepin, F. W. Simon, J. Opt. Soc. Am. 72, 1498 (1982). [CrossRef]
  9. S. Weisbrod, L. J. Anderson, Proc. IRE 4, 1770 (1959). [CrossRef]
  10. R. S. Longhurst, Geometrical and Physical Optics (Longmans, London, 1964), p. 417.
  11. B. Edlen, J. Opt. Soc. Am. 43, 339 (1953). [CrossRef]
  12. R. Penndorf, J. Opt. Soc. Am. 47, 176 (1957). [CrossRef]
  13. B. Edlen, Metrologia 2, 71 (1966). [CrossRef]
  14. J. C. Owen, Appl. Opt. 6, 51 (1967). [CrossRef]
  15. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 123.
  16. U.S. Standard Atmospheric Supplements (U.S. GPO, Washington, D.C., 1966).
  17. W. A. Heiskanen, H. Moritz, Physical Geodesy (Freeman, San Francisco, 1967), p. 181.
  18. M. V. Klein, Optics (Wiley, New York, 1970), p. 31.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited