OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 6 — Mar. 15, 1983
  • pp: 888–890

Signal-to-noise ratio of heterodyne detection: matrix formalism

J. Salzman and A. Katzir  »View Author Affiliations


Applied Optics, Vol. 22, Issue 6, pp. 888-890 (1983)
http://dx.doi.org/10.1364/AO.22.000888


View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A matrix method is developed for calculating the heterodyne efficiency of an optical receiver, taking into account the local oscillator field distribution, the receiving optics, and the atmospheric turbulence. The heterodyne efficiency in a circular symmetric receiver is given by a product of several matrices, each representing one of the optical parameters of the system, such as defocusing, Fresnel number of the optical system, central obscuration, or atmospheric coherence radius.

© 1983 Optical Society of America

History
Original Manuscript: July 26, 1982
Published: March 15, 1983

Citation
J. Salzman and A. Katzir, "Signal-to-noise ratio of heterodyne detection: matrix formalism," Appl. Opt. 22, 888-890 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-6-888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Teich, in Semiconductors and Semimetals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1970), Vol. 5, p. 361. [CrossRef]
  2. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer, Berlin, 1976). [CrossRef]
  3. J. H. McElroy; Appl. Opt. 11, 1619 (1972). [CrossRef] [PubMed]
  4. M. M. Abbas, M. J. Mumma, T. Kostiuk, D. Buhl, Appl. Opt. 15, 427 (1976). [CrossRef] [PubMed]
  5. H. T. Yura, Appl. Opt. 13, 150 (1974). [CrossRef] [PubMed]
  6. J. J. Degnan, B. J. Klein, Appl. Opt. 13, 2397 (1974). [CrossRef] [PubMed]
  7. S. C. Cohen, Appl. Opt. 14, 1953 (1975). [CrossRef] [PubMed]
  8. N. Saga, K. Tanaka, O. Fukumitsu, Appl. Opt. 29, 2827 (1981). [CrossRef]
  9. D. L. Fried, Proc. IEEE 55, 57 (1967). [CrossRef]
  10. J. P. Moreland, S. A. Collins, J. Opt. Soc. Am. 59, 10 (1969). [CrossRef]
  11. S. F. Clifford, S. Wandzura, Appl. Opt. 20, 514 (1981). [CrossRef] [PubMed]
  12. R. M. Gagliardi, S. Karps, Optical Communications (Wiley, London, 1976).
  13. D. McGuire, Opt. Lett. 5, 73 (1980). [CrossRef] [PubMed]
  14. B. J. Rye, Appl. Opt. 18, 1390 (1979). [CrossRef] [PubMed]
  15. D. Slepian, Bell Syst. Tech. J. 43, 3009 (1964).
  16. I. S. Gradszteyn, I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980).
  17. P. A. Belanger, R. Tremblay, Can. J. Phys. 49, 1290 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited