OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 6 — Mar. 15, 1983
  • pp: 927–939

High-resolution line-shape analyses of the pulsed cuprous chloride-laser oscillator and amplifier

W. C. Kreye and F. L. Roesler  »View Author Affiliations


Applied Optics, Vol. 22, Issue 6, pp. 927-939 (1983)
http://dx.doi.org/10.1364/AO.22.000927


View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-averaged spectral line shapes of the a hyperfine component of the Cul 5782-Å line (2D3/22P1/2) from a pulsed high-gain cuprous chloride (CuCl) laser are measured with a high-resolution (±1 mK) Fabry-Perot interferometer. Four operational modes are studied: (1) high-power oscillator; (2) low-power oscillator; (3) oscillator–amplifier combination; and (4) spontaneous-emission source. Two models are used for the oscillator and amplifier: a quasi-steady-state approximation and a gain-switched pulsed model, respectively. The corresponding computed interferograms are fitted to the experimental ones by varying the unsaturated gain g0, saturation and spontaneous-emission parameters, and the temperature and homogeneous FWHM. Use of a common discharge tube enables us to achieve a one–one correspondence between experimental data and laser parameters, whose resulting values agree with those obtained by other methods. Typically, the total average spectral output of the high-power oscillator is ~6.7 W and its g0 value is 0.15 cm−1.

© 1983 Optical Society of America

History
Original Manuscript: August 21, 1982
Published: March 15, 1983

Citation
W. C. Kreye and F. L. Roesler, "High-resolution line-shape analyses of the pulsed cuprous chloride-laser oscillator and amplifier," Appl. Opt. 22, 927-939 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-6-927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Szöke, A. Javan, Phys. Rev. Lett. 10, 521 (1963). [CrossRef]
  2. P. W. Smith, J. Appl. Phys. 37, 2089 (1966). [CrossRef]
  3. D. F. Hotz, Appl. Opt. 4, 527 (1965). [CrossRef]
  4. R. J. L. Chimenti, The Copper Vapor Laser, Ph.D. Thesis, Polytechnic Institute of New York, Brooklyn, N.Y. (1972).
  5. I. Smilanski, L. A. Levin, G. Erez, Opt. Lett. 5, 93 (1980). [CrossRef] [PubMed]
  6. E. A. Ballik, W. R. Bennett, G. N. Mercer, Appl. Phys. Lett. 8, 214 (1966). [CrossRef]
  7. J. D. Litke, J. Quant. Spectrosc. Radiat. Transfer. 17, 411 (1977). [CrossRef]
  8. N. M. Nerheim et al., IEEE J. Quantum Electron. QE-14, 686 (1978). [CrossRef]
  9. N. M. Nerheim, J. Appl. Phys. 48, 1186 (1977). [CrossRef]
  10. N. M. Nerheim, C. J. Chen, Visible Wavelength Laser Development Final Report, Phase I (Jet Propulsion Laboratory, for DARPA 2756, 1975).
  11. K. G. Harstad, IEEE J. Quantum Electron. QE-16, 550 (1980). [CrossRef]
  12. W. T. Walter, N. Solimene, G. M. Kull, in Proceedings, International Conference on Lasers, V. S. Corcoran, Ed. (STS, Mclean, Va., 1980), p. 148.
  13. W. C. Kreye, F. L. Roesler, J. Opt. Soc. Am. 60, 1100 (1970). [CrossRef]
  14. E. I. Gordon et al., in Proceedings, Symposium on Optical Lasers (Polytechnic Press, Brooklyn, N.Y., 1963), pp. 309–319.
  15. L. W. Casperson, A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972). [CrossRef]
  16. L. W. Casperson, Appl. Opt. 14, 299 (1975). [CrossRef] [PubMed]
  17. L. W. Casperson, J. Appl. Phys. 46, 5194 (1975). [CrossRef]
  18. A. Maitland, M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), Chap. 8.
  19. M. J. Kushner, IEEE J. Quantum Electron. QE-17, 1555 (1981). [CrossRef]
  20. L. W. Casperson, J. Appl. Phys. 47, 4563 (1976). [CrossRef]
  21. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (University P., New York, 1961), pp. 94 and 95.
  22. N. Kogelnik, A. Yariv, Proc. IEEE, 52, 165 (1964). [CrossRef]
  23. L. W. Casperson, J. Appl. Phys. 47, 4555 (1976). [CrossRef]
  24. G. P. Agrawal, M. Lax, J. Opt. Soc. Am. 71, 515 (1981). [CrossRef]
  25. W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965). [CrossRef]
  26. W. Fischer, H. Huhnermann, K. J. Kollath, Z. Phys. 194, 417 (1966). [CrossRef]
  27. Yu. I. Malakhov, Opt. Spectrosc. (USSR) 44, 125 (1978).
  28. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
  29. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).
  30. S. Trajmar et al., J. Phys. B 10, 3323 (1977). [CrossRef]
  31. E. Sovero et al., J. Appl. Phys. 47, 4538 (1976). [CrossRef]
  32. C. S. Liu, D. W. Feldman, J. L. Pack, L. A. Weaver, IEEE J. Quantum Electron. QE-13, 744 (1977). [CrossRef]
  33. C. Corliss, W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, Natl. Bur. Stand. (U.S.) Monogr. 53 (1962).
  34. E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra (University P., Cambridge, 1964), p. 98.
  35. A. U. Hazi, in Proceedings, Thirty-Third Gaseous Electronics Conference, Norman, Okla., 1980.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited