OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 22, Iss. 7 — Apr. 1, 1983
  • pp: 995–999

Bandwidth estimation for multimode optical fibers using the frequency correlation function of speckle patterns

Behzad Moslehi, Joseph W. Goodman, and Eric G. Rawson  »View Author Affiliations

Applied Optics, Vol. 22, Issue 7, pp. 995-999 (1983)

View Full Text Article

Enhanced HTML    Acrobat PDF (809 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present a new method for estimating the bandwidth of multimode optical fibers based on the frequency correlation function of the speckle patterns generated by the interference of fiber modes. This technique, which does not require a pulse or signal generator, can be utilized to estimate the bandwidth of a multimode fiber using a relatively short length of fiber. By applying this method to a test fiber we obtained a bandwidth of ~36 MHz · km which is in relatively good agreement with the ~44-MHz · km bandwidth measured by a conventional pulsed technique.

© 1983 Optical Society of America

Original Manuscript: September 21, 1982
Published: April 1, 1983

Behzad Moslehi, Joseph W. Goodman, and Eric G. Rawson, "Bandwidth estimation for multimode optical fibers using the frequency correlation function of speckle patterns," Appl. Opt. 22, 995-999 (1983)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).
  2. D. Gloge, E. I. Chinnock, IEEE J. Quantum Electron. QE-8, 852 (1972). [CrossRef]
  3. C. Lin, L. G. Cohen, W. G. French, H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1–1.3-μm Spectral Region: A Pulsed Synchronization Technique,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979), paper 14.3.
  4. J. W. Dannwolf, S. Gottfried, G. A. Sargent, R. Strum, IEEE Trans. Instrum. Meas. IM-25, 401 (1976). [CrossRef]
  5. L. Jeunhomme, P. Lamouler, “Intermodal dispersion measurements and interpretation in graded-index optical fibers,” Opt. Quantum Electron. 12, 57 (1980). [CrossRef]
  6. L. G. Cohen, Appl. Opt. 14, 1351 (1975). [CrossRef] [PubMed]
  7. T. Tanifuji, M. Ikeda, Appl. Opt. 16, 2175 (1977). [CrossRef] [PubMed]
  8. T. Tanifuji, M. Ikeda, Electron. Lett. 14, 367 (1978). [CrossRef]
  9. K. Daikoku, A. Sugimura, Electron. Lett. 14, 149 (1978). [CrossRef]
  10. L. G. Cohen, H. W. Astle, I. P. Kaminow, Appl. Phys. Lett. 30, 17 (1977). [CrossRef]
  11. D. Gloge, E. L. Chinnock, D. H. Ring, Appl. Opt. 11, 1534 (1972). [CrossRef] [PubMed]
  12. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, J. A. Arnaud, Appl. Opt. 19, 3749 (1980). [CrossRef] [PubMed]
  13. B. Crosignani, B. Daino, P. Di Porto, Appl. Phys. Lett. 27, 237 (1975). [CrossRef]
  14. R. E. Epworth, “The Phenomenon of Modal Noise in Analogue and Digital Optical Fibre Systems,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978), p. 492.
  15. E. G. Rawson, J. W. Goodman, R. E. Norton, J. Opt. Soc. Am. 70, 968 (1980). [CrossRef]
  16. A. Weierholt, Norwegian Institute of Technology; private communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited