OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 22, Iss. 9 — May. 1, 1983
  • pp: 1346–1353

Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

A. Zardecki, S. A. W. Gerstl, and J. F. Embury  »View Author Affiliations


Applied Optics, Vol. 22, Issue 9, pp. 1346-1353 (1983)
http://dx.doi.org/10.1364/AO.22.001346


View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored.

© 1983 Optical Society of America

History
Original Manuscript: November 18, 1982
Published: May 1, 1983

Citation
A. Zardecki, S. A. W. Gerstl, and J. F. Embury, "Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation," Appl. Opt. 22, 1346-1353 (1983)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-22-9-1346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  2. J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979), p. 420.
  3. K. N. Liou, J. Atmos. Sci. 30, 1303 (1973). [CrossRef]
  4. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, New York, 1980).
  5. J. Lenoble, Ed., “Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere,” Radiation Commission, IAMAP (National Center for Atmospheric Research, Boulder, Colo., 1977).
  6. G. I. Bell, S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970).
  7. S. A. W. Gerstl, “Application of Modern Neutron Transport Methods to Atmospheric Radiative Transfer,” Los Alamos Scientific Laboratory Report LA-UR-80-1403; Proceedings, International Radiation Symposium, Fort Collins, Colo., 11–16 Aug. 1980, Volume of Extended Abstracts, pp. 500–502.
  8. K. D. Lathrop, “threetran: A Program to Solve the Multigroup Discrete Ordinates Transport Equation in (x,y,z) Geometry,” Los Alamos Scientific Laboratory Report LA-6333-MS (May1976).
  9. B. W. Fowler, “An Investigation of Radiation Transfer through Aerosols,” U.S. Army Missle Research and Development Command Technical Report C-78-3 (June1978).
  10. B. W. Fowler, C. C. Sung, Appl. Opt, 17, 1797 (1978). [CrossRef] [PubMed]
  11. K. D. Lathrop, F. W. Brinkley, “twotran-ii: An Interfaced Exportable Version of the twotran Code for Two-Dimensional Transport,” Los Alamos Scientific Laboratory Report LA-4848-MS (July1973).
  12. W. J. Wiscombe, J. Atmos. Sci. 34, 1408 (1977). [CrossRef]
  13. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, J. Atmos. Sci. 33, 2452 (1976). [CrossRef]
  14. B. H. J. McKellar, M. A. Box, J. Atmos. Sci. 38, 1063 (1981). [CrossRef]
  15. E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” Air Force Geophysics Laboratory Report AFGL-TR-79-0214 (Sept.1979).
  16. R. C. Shirkey, A. Miller, G. H. Goedecke, Y. K. Behl, “Single Scattering Code agausx: Theory Applications, Comparisons, and Listing,” Atmospheric Sciences Laboratory Report ASL-TR-0062 (July1980).
  17. E. Burlbaw, A. Miller, “Modification of Single Scattering Model agaus,” Atmospheric Sciences Laboratory Report ASL-CR-81-0780-1 (May1981).
  18. H. Koschmieder, Z. Phys. d. Freien Atm. 12, 33 (1924).
  19. W. E. K. Middleton, Vision Through the Atmosphere (U. Toronto Press, Toronto, 1952), Chap. 6.
  20. J. Jung, H. Chijiwa, K. Kobajashi, H. Nishikara, Nucl. Sci. Eng. 49, 1 (1972).
  21. K. D. Lathrop, Nucl. Sci. Eng. 32, 357 (1968).
  22. K. D. Lathrop, Nucl. Sci. Eng. 45, 255 (1971).
  23. R. L. Fante, Proc. IEEE 68, 1424 (1980). [CrossRef]
  24. W. G. Tam, A. Zardecki, Opt. Acta 26, 659 (1979). [CrossRef]
  25. A. Deepak, U. O. Farrukh, A. Zardecki, Appl. Opt. 21, 439 (1982). [CrossRef] [PubMed]
  26. W. G. Tam, A. Zardecki, Appl. Opt. 19, 2822 (1980). [CrossRef] [PubMed]
  27. A. Gershun, J. Math. Phys. (MIT) 28, 51 (1939).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited