OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 23, Iss. 1 — Jan. 1, 1984
  • pp: 108–112

Computed spectral-linewidth minima for radiation of the pulsed cuprous chloride-type laser

W. C. Kreye  »View Author Affiliations


Applied Optics, Vol. 23, Issue 1, pp. 108-112 (1984)
http://dx.doi.org/10.1364/AO.23.000108


View Full Text Article

Enhanced HTML    Acrobat PDF (675 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Predicted spectral linewidths have been computed as a function of the laser and physical parameters of a pulsed high-gain three-level multimode self-terminating laser. In particular, the values of the parameters that yield minimum widths have been obtained because of their applications in the fields of holography and lidar. The model previously developed by the author for the cuprous chloride laser and the approximate parametric values found are used as a basis for these computations, since this laser combines visible radiation, high average power, and intrinsically narrow hyperfine lines. It is found that a temporal minimum width occurs prior to termination of the laser pulse for all parameter combinations. This temporal minimum width increases with increased temperature and Cu density, decreases with increased electron-excitation pumping rate from the ground to the upper excited state, and is virtually independent of the homogeneous FWHM. Quantitative relations between the coherence length and the spectral linewidth are derived for several waveforms.

© 1984 Optical Society of America

History
Original Manuscript: June 14, 1983
Published: January 1, 1984

Citation
W. C. Kreye, "Computed spectral-linewidth minima for radiation of the pulsed cuprous chloride-type laser," Appl. Opt. 23, 108-112 (1984)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-23-1-108


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. C. Kreye, F. L. Roesler, Appl. Opt. 22, 927 (1983). [CrossRef] [PubMed]
  2. A. A. Isaev, Sov. J. Quantum Electron. 10, 336 (1980). [CrossRef]
  3. M. C. Gokay, J. S. Harris, IEEE J. Quantum Electron. QE-18, 154 (1982); K. I. Zemskov et al.Sov. J. Quantum Electron. 8, 245 (1978). [CrossRef]
  4. E. W. Eloranta, F. L. Roesler, J. T. Sroga, “The High Spectral Resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983).
  5. N. M. Nerheim, A. M. Bhanji, G. R. Russell, IEEE J. Quantum Electron. QE-14, 686 (1978). [CrossRef]
  6. L. W. Casperson, J. Appl. Phys. 47, 4563 (1976). [CrossRef]
  7. A. Ludmirsky, Laser Focus 19, 20 (1983).
  8. A. Bloom, Gas Lasers (Wiley, New York, 1968), p. 147.
  9. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 192.
  10. H. H. Hopkins, “The Theory of Coherence and Its Applications,” in Advanced Optical Techniques, A. Van Heel, Ed. (North-Holland, Amsterdam, 1967).
  11. A. K. Ghatak, An Introduction to Modern Optics (McGraw-Hill, New York, 1972), p. 194.
  12. P. P. Gerke, Yu. N. Denisyuk, V. I. Lokshin, Sov. J. Opt. Technol. 35, 437 (1968).
  13. J. Ondra, Feingeraetetechnik 27, 106 (1978).
  14. L. Allen, Principles of Gas Lasers (Plenum, New York, 1967), pp. 119, 122; L. Mandel, in Progress in Optics, Vol. 2, E. Wolf, Ed. (North-Holland, Amsterdam, 1963), pp. 187–190. [CrossRef]
  15. H. C. Kuhn, Atomic Spectra (Academic, New York, 1969), p. 62.
  16. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, N.J., 1951), p. 60.
  17. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), pp. 320–323.
  18. R. Chimenti, Appl. Opt. 7, 2142 (1968). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited