OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 1 — Jan. 1, 1984
  • pp: 161–164

High quality antireflection coatings on laser facets by sputtered silicon nitride

G. Eisenstein and L. W. Stulz  »View Author Affiliations

Applied Optics, Vol. 23, Issue 1, pp. 161-164 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-layer antireflection (AR) coating films are used to transform semiconductor injection lasers into different kinds of active device. For example, a laser whose emitting facet reflectivities (one or both) are reduced to zero is transformed into a superluminescent diode or an optical amplifier, respectively. AR coated lasers are also very desirable in various configurations of a laser in an external cavity or as sources for optical fiber sensor applications. High quality antireflection coatings of laser facets have been achieved using sputtered silicon nitride. The emitting facets of InGaAsP lasers at 1.3 and 1.55 μm as well as of AlGaAs lasers at 0.85 μm were coated. The reflectivities achieved were consistently in the 0.01–0.03% range. Similar films were also used to AR coat InGaAs PIN detectors thereby significantly increasing their responsivity.

© 1984 Optical Society of America

Original Manuscript: August 3, 1983
Published: January 1, 1984

G. Eisenstein and L. W. Stulz, "High quality antireflection coatings on laser facets by sputtered silicon nitride," Appl. Opt. 23, 161-164 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. P. Kaminow, G. Eisenstein, L. W. Stulz, A. G. Dentai, IEEE J. Quantum Electron. QE-19, 78 (1983). [CrossRef]
  2. See, for example, Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17, 919 (1981), or D. Marcuse, IEEE J. Quantum Electron. QE-19, 63 (1983). [CrossRef]
  3. See, for example, R. S. Tucker, G. Eisenstein, I. P. Kaminow, Electron. Lett. 19, 552 (1983). [CrossRef]
  4. D. R. Kaplan, P. P. Deimel, “Exact calculation of the reflection coefficient for coated optical waveguide devices,” Bell Syst. Tech. J. in press.
  5. R. H. Clarke, “Theory of reflection from antireflection coatings,” Bell Syst. Tech. J. in press (Dec.1983).
  6. G. Eisenstein, “Theoretical design of single layer antireflection coatings on laser facets,” Bell. Syst. Tech. J. (Feb.1984).
  7. I. P. Kaminow, G. Eisenstein, L. Stulz, IEEE J. Quantum Electron. QE-19, 493 (1983). [CrossRef]
  8. W. C. Dautremont-Smith, L. C. Feldman, Thin Solid Films, 105, 187 (1983). [CrossRef]
  9. Ming-Jong Tsai, A. L. Fahrenbruch, R. H. Bube, J. Appl. Phys. 51 (May1980).
  10. K. Tsubaki, S. Ando, K. Oe, K. Sugiyama, Jpn. J. Appl. Phys. 18, 1191 (1979). [CrossRef]
  11. W. C. Dautremont-Smith, AT&T Bell Laboratories; private communication.
  12. L. G. Van Uitert, A. K. Chin, G. Zydzik, S. Singh, G. Minneci, J. Vacuum Sci. Technol. 1, 72 (1983). [CrossRef]
  13. See, for example, L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).
  14. F. Reizman, W. Van gleder, Solid State Electron 10, 625 (1967). [CrossRef]
  15. C. J. Mogab, P. M. Petroff, T. T. Cheng, J. Electrochem. Soc. Solid State Sci. Technol. 122, 815 (1975).
  16. E. V. Shitova, I. A. Yasneva, N. A. Genkina, Opt. Spectrosc. USSR 43, 140 (1977).
  17. R. A. Laff, Appl. Opt. 10, 968 (1971). [CrossRef] [PubMed]
  18. C. J. Mogab, E. Lugujjo, J. Appl. Phys. 47, No. 4 (Apr.1976). [CrossRef]
  19. W. Posadowski, Thin Solid films 69, 149 (1980). [CrossRef]
  20. G. J. Kominak, J. Electrochemical Soc. Solid State Sci. Technol. 122, 1271 (1975).
  21. O. S. Heavens, Thin Film Physics (Methuen, New York, 1970).
  22. J. E. Goell, R. D. Standley, Appl. Opt. 11, 2502 (1972). [CrossRef] [PubMed]
  23. I. P. Kaminow et al., Low threshold InGaAsP ridge waveguide laser at 1.3 μm. IEEE J. Quantum Electron. QE-19, No. 8 (Aug.1983).
  24. D. Marcuse, I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 1234 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited