OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 1 — Jan. 1, 1984
  • pp: 30–35

Temperature distributions produced by scanning Gaussian laser beams

D. J. Sanders  »View Author Affiliations

Applied Optics, Vol. 23, Issue 1, pp. 30-35 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general solution is presented for the temperature rise produced by the absorption of a scanning Gaussian laser beam in a solid target. In normalized coordinates, the temperature rise is found to depend only on the ratio of the scan speed to the rate of heat diffusion in the solid and the ratio of the beam radius to the absorption depth. For slow scan speeds the solution simplifies to the steady-state approximation in which the power input is balanced by heat conduction into the solid. For fast scan speeds the solution approaches the energy density limit in which the temperature rise is proportional to the integrated beam intensity. For highly absorbing materials the solution simplifies to the surface absorption approximation. The general solution demonstrates the conditions under which each approximation can be used. Similar solutions are found for the related case of pulsed exposure by a stationary beam. The solution is demonstrated experimentally by exposing thermal paper with a CO2 laser.

© 1984 Optical Society of America

Original Manuscript: June 1, 1983
Published: January 1, 1984

D. J. Sanders, "Temperature distributions produced by scanning Gaussian laser beams," Appl. Opt. 23, 30-35 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For a review of materials processing by lasers, see J. F. Ready, Proc. IEEE 70, 533 (1982). [CrossRef]
  2. For a review of laser annealing, see A. E. Bell, RCA Rev. 40, 295 (1979).
  3. D. Maydan, Bell Syst. Tech. J. 50, 1761 (1971).
  4. J. M. O’Reilly, R. A. Mosher, W. L. Goffe, Photogr. Sci. Eng. 23, 314 (1979).
  5. R. S. Braudy, J. Appl. Phys. 45, 3612 (1974). [CrossRef]
  6. C. A. Bruce, J. T. Jacobs, J. Appl. Photogr. Eng. 3, 40 (1977).
  7. Y. H. Wong, R. L. Thomas, G. F. Hawkins, Appl. Phys. Lett. 32, 538 (1978). [CrossRef]
  8. M. Lax, J. Appl. Phys. 48, 3919 (1977). [CrossRef]
  9. M. Lax, Appl. Phys. Lett. 33, 786 (1978). [CrossRef]
  10. M. Bertolotti, C. Sibilia, IEEE J. Quantum Electron. QE-17, 1980 (1981). [CrossRef]
  11. I. D. Calder, R. Sue, J. Appl. Phys. 53, 7545 (1982). [CrossRef]
  12. H. E. Cline, T. R. Anthony, J. Appl. Phys. 48, 3895 (1977). [CrossRef]
  13. Y. I. Nissim, A. Lietoila, R. B. Gold, J. F. Gibbons, J. Appl. Phys. 51, 274 (1980). [CrossRef]
  14. J. E. Moody, R. H. Hendel, J. Appl. Phys. 53, 4364 (1982). [CrossRef]
  15. M. L. Burgener, R. E. Reedy, J. Appl. Phys. 53, 4357 (1982). [CrossRef]
  16. M. Noguchi, Appl. Opt. 21, 2665 (1982). [CrossRef] [PubMed]
  17. D. B. Congleton, M. R. Smith, A. S. Diamond, J. Appl. Photogr. Eng. 3, 97 (1977).
  18. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U.P., Oxford, 1959).
  19. K. Mashio, in Proceedings, TAPPI 1979 Printing Reprography Testing Conference (TAPPI Press, Atlanta, 1979), p. 133.
  20. L. A. Kirk, C. Tatlicibasi, Tappi 55, 1697 (1972).
  21. R. J. Kerekes, Tappi 63, 137 (1980).
  22. D. J. Sanders, R. C. Forsyth, Rev. Sci. Instrum. 54, 238 (1983). [CrossRef]
  23. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited