OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 23, Iss. 1 — Jan. 1, 1984
  • pp: 30–35

Temperature distributions produced by scanning Gaussian laser beams

D. J. Sanders  »View Author Affiliations


Applied Optics, Vol. 23, Issue 1, pp. 30-35 (1984)
http://dx.doi.org/10.1364/AO.23.000030


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general solution is presented for the temperature rise produced by the absorption of a scanning Gaussian laser beam in a solid target. In normalized coordinates, the temperature rise is found to depend only on the ratio of the scan speed to the rate of heat diffusion in the solid and the ratio of the beam radius to the absorption depth. For slow scan speeds the solution simplifies to the steady-state approximation in which the power input is balanced by heat conduction into the solid. For fast scan speeds the solution approaches the energy density limit in which the temperature rise is proportional to the integrated beam intensity. For highly absorbing materials the solution simplifies to the surface absorption approximation. The general solution demonstrates the conditions under which each approximation can be used. Similar solutions are found for the related case of pulsed exposure by a stationary beam. The solution is demonstrated experimentally by exposing thermal paper with a CO2 laser.

© 1984 Optical Society of America

History
Original Manuscript: June 1, 1983
Published: January 1, 1984

Citation
D. J. Sanders, "Temperature distributions produced by scanning Gaussian laser beams," Appl. Opt. 23, 30-35 (1984)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-23-1-30

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited