OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 1 — Jan. 1, 1984
  • pp: 74–82

Chirped picosecond pulses: evaluation of the time-dependent wavelength for semiconductor film lasers

D. Marcuse and J. M. Wiesenfeld  »View Author Affiliations

Applied Optics, Vol. 23, Issue 1, pp. 74-82 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Picosecond pulses from semiconductor lasers are chirped (have time-dependent wavelengths) due to the effect of free carriers on the refractive index of the laser material. For optically pumped ultrashort-cavity semiconductor film lasers, the chirp is large (>1 nm/psec) and nonlinear in time because of the very high carrier concentration (> 1020 carriers/cm3) present during the operation of the laser. Experimentally, the chirp of film lasers is measured by optical upconversion sampling of the laser pulse followed by spectral filtering. This paper presents a mathematical model of this detection scheme which is used to extract the instantaneous time-dependent laser wavelength λ(t) from the measured data. Coefficients for the linear and quadratic terms of a power-series expansion of λ(t) are obtained for two InGaAsP film lasers. These parameters are used to compute time-averaged pulse spectra, which are compared with measured spectra. A formula is presented for the compression of chirped pulses in dispersive optical media which is used for comparison with experimental pulse compression results obtained by passing the film laser pulse through a short dispersive optical fiber. Finally, the time-dependent wavelength is related to the instantaneous carrier concentration in semiconductor material.

© 1984 Optical Society of America

Original Manuscript: August 24, 1983
Published: January 1, 1984

D. Marcuse and J. M. Wiesenfeld, "Chirped picosecond pulses: evaluation of the time-dependent wavelength for semiconductor film lasers," Appl. Opt. 23, 74-82 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Hakki, J. Appl. Phys. 51, 68 (1980). [CrossRef]
  2. F. Koyoma, A. Arai, Y. Suematsu, K. Kishino, Electon. Lett. 17, 938 (1981). [CrossRef]
  3. K. Kishino, S. Aoki, Y. Suematsu, IEEE J. Quantum Electron. QE-18, 343 (1982). [CrossRef]
  4. J. van der Ziel, IEEE J. Quantum Electron. QE-15, 1277 (1979). [CrossRef]
  5. C. Lin, T. P. Lee, C. A. Burrus, Appl. Phys. Lett. 42, 141 (1983). [CrossRef]
  6. K. Iwashita, K. Nakagawa, Y. Nakano, Y. Suzuki, Electron. Lett. 18, 873 (1982). [CrossRef]
  7. J. M. Wiesenfeld, J. Stone, Opt. Lett. 8, 262 (1983). [CrossRef] [PubMed]
  8. G. H. B. Thompson, Opto-electronics 4, 257 (1972). [CrossRef]
  9. M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-16, 910 (1980). [CrossRef]
  10. K. Stubkjaer, Y. Suematsu, M. Asada, S. Arai, A. R. Adams, Electron. Lett. 16, 895 (1980). [CrossRef]
  11. J. S. Manning, R. Olshansky, Electron. Lett. 17, 506 (1981). [CrossRef]
  12. T. Suzuki, T. Fukumoto, Electron. Commun. Jpn. 59C, 117 (1976).
  13. D. Marcuse, Appl. Opt. 20, 3573 (1981). [CrossRef] [PubMed]
  14. J. V. Wright, B. P. Nelson, Electron. Lett. 13, 361 (1977). [CrossRef]
  15. J. Stone et al.Opt. Lett. 6, 534 (1981). [CrossRef] [PubMed]
  16. J. M. Wiesenfeld, J. Stone, to be published.
  17. R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981). [CrossRef]
  18. D. A. B. Miller, S. D. Smith, B. S. Wherrett, Opt. Commun. 35, 221 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited