OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 23, Iss. 1 — Jan. 1, 1984
  • pp: 94–99

Generalized Epstein model of stripe-geometry injection lasers

Teodora Dziewiecka and Marek Osiński  »View Author Affiliations


Applied Optics, Vol. 23, Issue 1, pp. 94-99 (1984)
http://dx.doi.org/10.1364/AO.23.000094


View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new rich family of complex permittivity profiles is obtained by introduction of additional parameters in the Burman and Gould procedure of generating the generalized Epstein profile. As an example of its possible applications, a model of planar-stripe injection lasers is developed. By proper choice of parameters the permittivity profile along the junction plane can be varied in its central part without affecting its tails. Effects of interaction between the optical field and the charge carriers inside the stripe can thus be modeled. An analytical solution of the wave equation is given, and a number of examples of the near-field pattern for the fundamental lateral mode are calculated for (AlGa)As lasers by a self-consistent iterative technique. The influence of asymmetry of the permittivity on near-field shifts is demonstrated.

© 1984 Optical Society of America

History
Original Manuscript: April 2, 1983
Published: January 1, 1984

Citation
Teodora Dziewiecka and Marek Osiński, "Generalized Epstein model of stripe-geometry injection lasers," Appl. Opt. 23, 94-99 (1984)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-23-1-94


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. L. Paoli, IEEE J. Quantum Electron. QE-12, 770 (1976). [CrossRef]
  2. K. Kobayashi et al., IEEE J. Quantum Electron. QE-13, 659 (1977). [CrossRef]
  3. P. A. Kirkby, A. R. Goodwin, G. H. B. Thompson, P. R. Selway, IEEE J. Quantum Electron. QE-13, 705 (1977). [CrossRef]
  4. N. Chinone, J. Appl. Phys. 48, 3237 (1977). [CrossRef]
  5. H. S. Sommers, J. Appl. Phys. 50, 6630 (1979). [CrossRef]
  6. D. Kerps, Proc. Inst. Electr. Eng. Part I: Solid-State Electron Devices 127, 94 (1980).
  7. G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEE J. Solid-State Electron Devices 2, 12 (1978). [CrossRef]
  8. R. Lang, IEEE J. Quantum Electron. QE-15, 718 (1979). [CrossRef]
  9. R. W. Dixon, W. B. Joyce, Bell Syst. Tech. J. 59, 975 (1980).
  10. K. A. Shore, T. E. Rozzi, G. H. in’t Veld, Proc. Inst. Electr. Eng. Part I: Solid-State Electron Devices 127, 221 (1980).
  11. C. B. Su, J. Appl. Phys. 52, 2665 (1981). [CrossRef]
  12. K. A. Shore, T. E. Rozzi, Proc. Inst. Electr. Eng. Part I: Solid-State Electron Devices 128, 154 (1981).
  13. J. K. Butler, H. S. Sommers, IEEE J. Quantum Electron. QE-14, 413 (1978). [CrossRef]
  14. F. D. Nunes, N. B. Patel, J. G. Mendoza Alvarez, J. E. Ripper, J. Appl. Phys. 50, 3852 (1979). [CrossRef]
  15. P. M. Asbeck, D. A. Cammack, J. J. Daniele, Appl. Phys. Lett. 33, 504 (1978). [CrossRef]
  16. W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-14, 418 (1978). [CrossRef]
  17. M. Osiński, P. G. Eliseev, IEE J. Solid-State Electron Devices 3, 215 (1979). [CrossRef]
  18. P. G. Eliseev, M. Osiński, Kvantovaya Elektron. (Moscow) 7, 1407 (1980) [Sov. J. Quantum Electron. 10, 811 (1980)].
  19. W. Streifer, D. R. Scifres, R. D. Burnham, Electron. Lett. 17, 933 (1981). [CrossRef]
  20. K. Petermann, Opt. Quantum Electron. 13, 323 (1981). [CrossRef]
  21. T. J. S. Mattos, N. B. Patel, F. D. Nunes, J. Appl. Phys. 53, 149 (1982). [CrossRef]
  22. J. Pietzsch, Electron. Lett. 18, 1015 (1982). [CrossRef]
  23. W. Streifer, R. D. Burnham, D. R. Scifres, IEEE J. Quantum Electron. QE-15, 136 (1979). [CrossRef]
  24. H. Namizaki, H. Kan, M. Ishii, A. Ito, J. Appl. Phys. 45, 2785 (1974). [CrossRef]
  25. G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE J. Quantum Electron. QE-15, 772 (1979). [CrossRef]
  26. T. Sugino, K. Itoh, H. Shimizu, M. Wada, I. Teramoto, IEEE J. Quantum Electron. QE-17, 745 (1981). [CrossRef]
  27. T. Choroś, M. Osiński, in Proceedings, International Conference Radiative Recombination and Related Phenomena in III–V Compound Semiconductors RECON-79, Prague, 4–7 Sept. 1979, p. 32.
  28. T. Dziewiecka, M. Osiński, in Proceedings, International Workshop on the Physics of Semiconductor Devices, Delhi, India, 23–28 Nov. 1981, p. 60.
  29. P. S. Epstein, Proc. Natl. Acad. Sci. USA 16, 627 (1930). [CrossRef] [PubMed]
  30. L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1980). Note that in formula (20.11) on p. 166 the factor ½(γ − α − β − 1) should read as an exponent of (1 − ζ).
  31. S. N. Stolyarov, Kvantovaya Elektron. No. 8, 69 (1972) [Sov. J. Quantum Electron. 2, 144 (1972)].
  32. M. Osiński, AEU Arch. Elektron. Ubertragungstech. Electron. Commun. 30, 223 (1976).
  33. M. Osiński, Opt. Quantum Electron. 9, 361 (1977). [CrossRef]
  34. M. Osiński, Acta Phys. Pol. A 60, 109 (1981).
  35. R. Burman, R. N. Gould, Can. J. Phys. 43, 921 (1965). [CrossRef]
  36. T. L. Paoli, IEEE J. Quantum Electron. QE-13, 662 (1977). [CrossRef]
  37. W. Streifer, E. Kapon, Appl. Opt. 18, 3724 (1979). [CrossRef] [PubMed]
  38. J. Buus, IEEE J. Quantum Electron. QE-18, 1083 (1982). [CrossRef]
  39. J. Buus, Opt. Quantum Electron. 10, 459 (1978). [CrossRef]
  40. R. Lang, Trans. IECE Jpn. E62, 299 (1979).
  41. P. M. Asbeck, D. A. Cammack, J. J. Daniele, V. Klebanoff, IEEE J. Quantum Electron. QE-15, 727 (1979). [CrossRef]
  42. J. Buus, IEEE J. Quantum Electron. QE-19, 953 (1983). [CrossRef]
  43. B. W. Hakki, C. J. Hwang, J. Appl. Phys. 45, 2168 (1974). [CrossRef]
  44. G. H. B. Thompson, G. D. Henshall, J. E. A. Whiteaway, P. A. Kirkby, J. Appl. Phys. 47, 1501 (1976). [CrossRef]
  45. D. Botez, G. J. Herskowitz, Proc. IEEE 68, 689 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited