OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 23, Iss. 10 — May. 15, 1984
  • pp: 1559–1572

Quantitative measurement of NO density by resonance three-photon ionization

Terrill A. Cool  »View Author Affiliations


Applied Optics, Vol. 23, Issue 10, pp. 1559-1572 (1984)
http://dx.doi.org/10.1364/AO.23.001559


View Full Text Article

Enhanced HTML    Acrobat PDF (1980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ionization probe and measurement procedures are developed to permit accurate NO density measurements with good spatial and temporal resolution and with the high sensitivity and good discrimination inherent in resonance-enhanced multiple-photon ionization processes. The use of NO as a calibration standard for density measurements of other molecules and combustion radicals is discussed.

© 1984 Optical Society of America

History
Original Manuscript: December 8, 1983
Published: May 15, 1984

Citation
Terrill A. Cool, "Quantitative measurement of NO density by resonance three-photon ionization," Appl. Opt. 23, 1559-1572 (1984)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-23-10-1559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. G. Mallard, J. H. Miller, K. C. Smyth, J. Chem. Phys. 76, 3483 (1982). [CrossRef]
  2. B. H. Rockney, T. A. Cool, E. R. Grant, Chem. Phys. Lett. 87, 141 (1982). [CrossRef]
  3. K. C. Smyth, W. G. Mallard, J. Chem. Phys. 77, 1779 (1982). [CrossRef]
  4. J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982). [CrossRef] [PubMed]
  5. J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983). [CrossRef]
  6. P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983). [CrossRef]
  7. G. S. Hurst, M. G. Payne, J. D. Kramer, J. P. Young, Rev. Mod. Phys. 51, 767 (1979), and references therein. [CrossRef]
  8. G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, Appl. Phys. Lett. 33, 54 (1978). [CrossRef]
  9. M. G. Payne, C. H. Chen, G. S. Hurst, G. W. Foltz, Adv. At. Mol. Phys. 17, 229 (1981), and references therein. [CrossRef]
  10. D. M. Lubman, M. N. Kronick, Anal. Chem. 54, 660 (1982). [CrossRef]
  11. D. A. Lichtin, L. Zandee, R. B. Bernstein in Lasers in Chemical Analysis, G. Hieftje, J. Travis, F. Lytle, Eds. (Humana, Clifton, N.J.1981), Chap. 6.
  12. For a review of work through mid-1981, see P. M. Johnson, C. E. Otis, Ann. Rev. Phys. Chem. 32, 139 (1981). [CrossRef]
  13. The extensive volume of recent work makes it impractical to cite more than a few representative papers. Interesting examples are W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gaugacq, P. Avouris, J. J. Wynne, J. Chem. Phys. 78, 3625 (1983); D. W. Squire, M. B. Barbalas, R. B. Bernstein, J. Phys. Chem. 87, 1701 (1983); E. F. Marinero, R. Vasudev, R. N. Zare, J. Chem. Phys. 78, 692 (1983); A. J. Grimley, B. D. Kay, Chem. Phys. Lett. 98, 359 (1983); R. L. Whetten, K.-S. Fu, E. R. Grant, J. Chem. Phys. 79, 2626 (1983); R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983). [CrossRef]
  14. E. R. Sirkin, Y. Haas, Appl. Phys. 25, 253 (1981). [CrossRef]
  15. “Experimental Diagnostics in Gas Phase Combustion Systems,” in Progress in Astronautics and Aeronautics, Vol. 53, B. J. Zinn, Ed. (American Institute of Aeronautics and Astronautics, New York, 1977).
  16. M. Lapp, C. M. Penney, Eds. Laser Raman Gas Diagnostics (Plenum, New York, 1974).
  17. D. R. Crosley, Ed. Laser Probes for Combustion Diagnostics, American Chemical Society Symposium Series No. 134 (American Chemical Society, Washington, D.C., 1980). [CrossRef]
  18. Several review papers on laser-based diagnostics appear in Opt. Eng. 20, 493 (1981).
  19. D. Klick, K. A. Marko, L. Rimai, Appl. Opt. 20, 1178 (1981). [CrossRef] [PubMed]
  20. M. Pealat, J. P. Taran, F. Moya, Opt. Laser Technol. 12, 21 (1980). [CrossRef]
  21. A. C. Eckbreth, Combust. Flame 39, 133 (1980). [CrossRef]
  22. I. A. Stenhouse, D. R. Williams, J. B. Cole, M. D. Swards, Appl. Opt. 18, 3819 (1979). [PubMed]
  23. J. W. Daily, Appl. Opt. 17, 225 (1978), and references therein. [CrossRef] [PubMed]
  24. R. P. Lucht, N. M. Laurendeau, Appl. Opt. 18, 856 (1979). [CrossRef] [PubMed]
  25. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, Combust. Flame 50, 189 (1983). [CrossRef]
  26. M. J. Dyer, D. R. Crosley, Opt. Lett. 7, 382 (1982). [CrossRef] [PubMed]
  27. G. Kychakoff, R. D. Howe, R. K. Hanson, J. D. McDaniel, Appl. Opt. 21, 3225 (1982). [CrossRef] [PubMed]
  28. W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981). [CrossRef]
  29. D. R. Crosley, G. P. Smith, Appl. Opt. 19, 517 (1980). [CrossRef] [PubMed]
  30. R. J. Cattolica, Appl. Opt. 20, 1156 (1981). [CrossRef] [PubMed]
  31. J. M. Schoenung, R. K. Hanson, Combust. Sci. Tech. 24, 227 (1981). [CrossRef]
  32. P. L. Varghese, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 29, 205 (1983). [CrossRef]
  33. R. K. Hanson, P. A. Kuntz, C. H. Kruger, Appl. Opt. 16, 2045 (1977). [CrossRef] [PubMed]
  34. G. C. Bjorklund, R. R. Freeman, R. H. Storz, Opt. Commun. 31, 47 (1979). [CrossRef]
  35. R. J. S. Morrison, E. R. Grant, J. Chem. Phys. 75, 49 (1981). [CrossRef]
  36. D. H. Wilkinson, Ionization Chambers and Counters (Cambridge U. P., London, 1950).
  37. B. B. Rossi, H. H. Staub, Ionization Chambers and Counters (McGraw-Hill, New York, 1949).
  38. S. C. Curran, J. O. Craggs, Counting Tubes (Academic, New York, 1949).
  39. Ref. 37, Chap. 3.
  40. W. G. Mallard, K. C. Smyth, Combust. Flame 44, 61 (1982). [CrossRef]
  41. For NO/Ar mixtures, a strong tendency for avalanche ionization exists at high pressures (700 Torr), which substantially reduces the range of plateau voltages compared with the NO/N2 mixture case.
  42. D. Zakheim, P. Johnson, J. Chem. Phys. 68, 3644 (1978). [CrossRef]
  43. W. M. Jackson, C. S. Lin, Int. J. Chem. Kinet. 10, 945 (1978). [CrossRef]
  44. L. Zandee, R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979). [CrossRef]
  45. H. Zacharias, R. Schmiedl, K. H. Welge, Appl. Phys. 21, 127 (1980). [CrossRef]
  46. J. S. Hayden, G. J. Diebold, J. Chem. Phys. 77, 4767 (1982). [CrossRef]
  47. The values of the predissociation rate and spontaneous emission rate from the C2Π v = 0 state have been the subject of much discussion in the literature. The values given here are consistent with recent work reported in: J. Brzozowski, P. Erman, M. Lyyra, Phys. Scr. 14, 290 (1976); S. Yagi, T. Hikida, Y. More, Chem. Phys. Lett. 56, 113 (1978); O. Benoist d’Azy, R. Lopez-Delgado, A. Tramer, Chem. Phys. 9, 327 (1975). Previous work [A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970)] based on older C2Π radiative lifetime data gave a larger predissociation rate (1.6 × 109 sec−1). [CrossRef]
  48. The cross section for photoionization of the C2Π v = 0 state at 381.9 nm (σ = 4 × 10−18 cm2) was calculated with the quantum defect method of Burgess and Seaton [A. Burgess, M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960)] with quantum defect data given by Jungen [J. Chem. Phys. 53, 4168 (1970)]. This value is greater than the result (σ = 1.7 × 10−18 cm2) given by Cremaschi [P. Cremaschi, Chem. Phys. Lett. 83, 106 (1981)] for a similar calculation. [CrossRef]
  49. F. Ackermann, E. Miescher, J. Mol. Spectrosc. 31, 400 (1960). [CrossRef]
  50. P. A. Freedman, Can. J. Phys. 55, 1387 (1977). [CrossRef]
  51. C. E. Otis, P. M. Johnson, Chem. Phys. Lett. 83, 73 (1981). [CrossRef]
  52. D. S. Zakheim, P. M. Johnson, Chem. Phys. 46, 263 (1980). [CrossRef]
  53. J. Morellec, D. Normand, G. Petite, Phys. Rev. A 14, 300 (1976). [CrossRef]
  54. J. R. Ackerhalt, B. W. Shore, Phys. Rev. A 16, 277 (1977). [CrossRef]
  55. J. R. Ackerhalt, J. H. Eberly, Phys. Rev. A 14, 1705 (1976). [CrossRef]
  56. A. B. Callear, I. W. M. Smith, Trans. Faraday Soc. 61, 2383 (1965). [CrossRef]
  57. D. S. King, R. R. Cavanagh, Opt. Lett. 8, 18 (1983). [CrossRef] [PubMed]
  58. A. B. Callear, M. J. Pilling, Trans. Faraday Soc. 66, 1618 (1970). [CrossRef]
  59. Peak spatial and temporal values of the laser intensity are more relevant to the nonlinear REMPI process than the average value If; the effective intensity for ionization may be two to three times larger than If.
  60. For NO/Ar mixtures, the onset of electron avalanche is more sensitive to increases in laser intensity. This results in a pronounced reduction in the range of voltages associated with the plateau region as the laser intensity is increased.
  61. Ref. 36, Chap. 1.
  62. While this procedure works well for NO/N2 mixtures, it may not give reliable results for mixtures more prone to avalanche, e.g., NO/Ar, where the proper probe voltage may depend more strongly on laser intensity.
  63. F. C. Fehsenfeld, J. Chem. Phys. 53, 2000 (1970). [CrossRef]
  64. L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley, New York, 1971).
  65. R. L. Whetten, K.-S. Fu, R. S. Tapper, E. R. Grant, J. Phys. Chem. 87, 1484 (1983). [CrossRef]
  66. P. J. H. Tjossem, T. A. Cool, unpublished work.
  67. J. E. M. Goldsmith, unpublished work.
  68. T. G. DiGiuseppe, J. W. Hudgens, M. C. Lin, J. Phys. Chem. 86, 36 (1982); Chem. Phys. Lett. 82, 267 (1981); J. Chem. Phys. 76, 3338 (1982). [CrossRef]
  69. B. H. Rockney, E. R. Grant, J. Chem. Phys. 77, 4257 (1982). [CrossRef]
  70. J. Danon, H. Zacharias, H. Rottke, K. H. Welge, J. Chem. Phys. 76, 2399 (1982). [CrossRef]
  71. J. W. Hudgens, T. G. DiGiuseppe, M. C. Lin, J. Chem. Phys. 79, 571 (1983). [CrossRef]
  72. R. W. Jones, N. Sivakumar, B. H. Rockney, P. L. Houston, E. R. Grant, Chem. Phys. Lett. 91, 271 (1982). [CrossRef]
  73. W. R. Ferrell, C. H. Chen, M. G. Payne, R. D. Willis, Chem. Phys. Lett. 97, 460 (1983). [CrossRef]
  74. S. T. Pratt, E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 65 (1983). [CrossRef]
  75. S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 79, 3234 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited