OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 11 — Jun. 1, 1984
  • pp: 1700–1706

Paraxial theory of rotationally distributed-index media by means of Gaussian Constants

Kazuo Tanaka  »View Author Affiliations

Applied Optics, Vol. 23, Issue 11, pp. 1700-1706 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using Gaussian Constants, a self-contained paraxial theory for rotationally distributed-index media has been formulated. The differential equations governing a ray transfer in inhomogeneous media have been derived together with an analytical solution and a numerical calculation method. The Lagrange-Helmholtz invariant for inhomogeneous media is presented, and a homogeneous model equivalent to ray transfer in inhomogeneous media is proposed. A numerical example is added to confirm the analysis.

© 1984 Optical Society of America

Original Manuscript: July 11, 1983
Published: June 1, 1984

Kazuo Tanaka, "Paraxial theory of rotationally distributed-index media by means of Gaussian Constants," Appl. Opt. 23, 1700-1706 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, J. M. Stagaman, Appl. Opt. 21, 993 (1982). [CrossRef] [PubMed]
  2. M. Toyama, M. Takami, Appl. Opt. 21, 1013 (1982). [CrossRef] [PubMed]
  3. M. Oikawa, K. Iga, Appl. Opt. 21, 1052 (1982). [CrossRef] [PubMed]
  4. H. A. Buchdahl, Optical Aberration Coefficients (Dover, New York, 1968), Sec. 209.
  5. P. J. Sands, J. Opt. Soc. Am. 61, 879 (1971). [CrossRef]
  6. D. T. Moore, J. Opt. Soc. Am. 61, 886 (1971). [CrossRef]
  7. See, for examaple, E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), p. 32.
  8. See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), p. 128.
  9. See, for example, K. Yano, S. Ishihara, Introduction to Analysis (Shokabo, Tokyo, 1968), p. 65.
  10. See, for example, Mathematical Society of Japan, Ed., Encyclopedic Dictionary of Mathematics (Iwanami, Tokyo, 1972), p.618.
  11. See, for example, “Hitac Mathematical Subprogram Library,” 8080-7-005-01 (Hitachi, Yokohama, 1977), p. 54.
  12. K. Tanaka, Optik (Stuttgart) 58, 351 (1981).
  13. K. Tanaka, Optik (Stuttgart) 62, 211 (1982).
  14. K. Tanaka, Optik (Stuttgart) 64, 13 (1983).
  15. M. Herzberger, J. Opt. Soc. Am. 33, 651 (1943). [CrossRef]
  16. M. Herzberger, J. Opt. Soc. Am. 42, 637 (1952). [CrossRef]
  17. M. Herzberger, Modern Geometrical Optics (Interscience, New York, 1958), p. 457.
  18. G. A. Deschamps, P. E. Mast, Quasi-Optics (Polytechnic Press, Brooklyn, 1964), p. 379.
  19. See, for example, The Institute of Electric Engineers of Japan, Ed., The Theory of Electrical Networks (Gakkensha, Tokyo, 1970), p. 183.
  20. K. Tanaka, Optik (Stuttgart) 64, 89 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited