OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 11 — Jun. 1, 1984
  • pp: 1835–1843

Radiative cooling with selectively infrared-emitting gases

Elias M. Lushiku and Claes-Goran Granqvist  »View Author Affiliations

Applied Optics, Vol. 23, Issue 11, pp. 1835-1843 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gases which are strongly emitting only in the 8–13-μm wavelength range can be employed for radiative cooling to low temperatures. We carried out a general discussion of molecular vibration and rotation to identify a number of candidate gases. Three of the most promising ones—ammonia, ethylene, and ethylene oxide—were then studied in detail. Infrared transmittance spectra were recorded for 5–50 μm by spectrophotometry. These data were used to compute the basic cooling parameters and the relation between cooling power and temperature difference for pure and mixed gases. The results of some practical field tests of radiative cooling are reported.

© 1984 Optical Society of America

Original Manuscript: December 20, 1983
Published: June 1, 1984

Elias M. Lushiku and Claes-Goran Granqvist, "Radiative cooling with selectively infrared-emitting gases," Appl. Opt. 23, 1835-1843 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Trombe, “Perspectives sur l’Utilization des Rayonnements Solaires et Terrestres dans Certaines Régions du Monde,” Rev. Gen. Therm. 6, 1285 (1967).
  2. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, “The Radiative Cooling of Selective Surfaces,” Sol. Energy 17, 83 (1975). [CrossRef]
  3. C. G. Granqvist, A. Hjortsberg, “Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films,” J. Appl. Phys. 52, 4205 (1981). [CrossRef]
  4. P. Berdahl, M. Martin, F. Sakkal, “Thermal Performance of Radiative Cooling Panels,” Int. J. Heat Mass Transfer 26, 871 (1983). [CrossRef]
  5. P. Berdahl, R. Fromberg, “The Thermal Radiance of Clear Skies,” Sol. Energy 29, 299 (1982). [CrossRef]
  6. T. S. Eriksson, C. G. Granqvist, “Radiative Cooling Computed for Model Atmospheres,” Appl. Opt. 21, 4381 (1982). [CrossRef] [PubMed]
  7. T. S. Eriksson, A. Hjortsberg, C. G. Granqvist, in Proceedings, Seventh International Conference on Vacuum Metallurgy—Special Meltings and Metallurgical Coatings (The Iron and Steel Institute of Japan, 1982), p. 696; T. S. Eriksson, E. M. Lushiku, C. G. Granqvist, “Materials for Radiative Cooling to Low Temperatures,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 105 (1983).
  8. T. S. Eriksson, C. G. Granqvist, “Infrared Optical Properties of Electron-Beam Evaporated Silicon Oxynitride Films,” Appl. Opt. 22, 3204 (1983). [CrossRef] [PubMed]
  9. D. Michell, K. L. Biggs, “Radiation Cooling of Buildings at Night,” Appl. Energy 5, 263 (1979). [CrossRef]
  10. B. Landro, P. G. McCormick, “Effect of Surface Characteristics and Atmospheric Conditions on Radiative Heat Loss to a Clear Sky,” Int. J. Heat Mass Transfer 23, 613 (1980). [CrossRef]
  11. P. Grenier, “Réfrigération Radiative. Effet de Serre Inverse,” Rev. Phys. Appl. 14, 87 (1979). [CrossRef]
  12. A. Hjortsberg, C. G. Granqvist, “Radiative Cooling with Selectively Emitting Ethylene Gas,” Appl. Phys. Lett. 39, 507 (1981). [CrossRef]
  13. E. M. Lushiku, A. Hjortsberg, C. G. Granqvist, “Radiative Cooling with Selectively Infrared-Emitting Ammonia Gas,” J. Appl. Phys. 53, 5526 (1982). [CrossRef]
  14. R. C. Weast, M. J. Astle, Eds., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1979), pp. B-91–B-184, C-81–C-548.
  15. L. J. Bellamy, The Infra-red Spectra of Complex Molecules (Chapman & Hall, London, 1975).
  16. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945).
  17. W. J. Jones, in Infra-red Spectroscopy and Molecular Structure, M. Davies, Ed. (Elsevier, Amsterdam, 1963), pp. 111–165.
  18. T. K. McCubbin, W. M. Sinton, “Recent Investigations in the Far Infra-Red,” J. Opt. Soc. Am. 40, 537 (1950). [CrossRef]
  19. R. L. Hansler, R. A. Oetjen, “The Infrared Spectra of HCl, DCl, HBr, and NH3 in the Region from 40 to 140 Microns,” J. Chem. Phys. 21, 1340 (1953). [CrossRef]
  20. The optical constants of Al were obtained from J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals, Part 2 (Fachinformationszentrum Energie, Physik, Mathematik GmbH, Karlsruhe, Germany, 1981), pp. 65–81.
  21. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  22. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, R. W. Fenn, R. A. McClatchey, Air Force Geophys. Lab. Tech. Rep. AFGL-TR-80-0067 (Feb.1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited