OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 14 — Jul. 15, 1984
  • pp: 2376–2385

Collisional narrowing effects on spectral line shapes measured at high resolution

Philip L. Varghese and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 23, Issue 14, pp. 2376-2385 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The averaging effect of velocity-changing collisions reduces the Doppler broadening of isolated spectral lines and leads to one type of collisional narrowing. We present four collisionally narrowed profiles in standardized form using dimensionless parameters and estimate the quantitative effect of narrowing on the spectral line shape in terms of the magnitudes of these parameters. We show that a collisionally narrowed profile fitted by a Voigt function exhibits a characteristic signature on a plot of the residual errors in the fit. This provides a simple test for detectable narrowing effects. One of the simpler and better known models which includes collisional narrowing is the Galatry profile. We present sample plots of the residual errors resulting when theoretical profiles computed from other more elaborate models are fitted by a Galatry function.

© 1984 Optical Society of America

Original Manuscript: July 14, 1983
Published: July 15, 1984

Philip L. Varghese and Ronald K. Hanson, "Collisional narrowing effects on spectral line shapes measured at high resolution," Appl. Opt. 23, 2376-2385 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Dicke, “The Effect of Collisions upon the Doppler Width of Spectral Lines,” Phys. Rev. 89, 472 (1953). [CrossRef]
  2. J. R. Murray, A. Javan, “Effects of Collisions on Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1 (1972). [CrossRef]
  3. R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelley, A. Javan, “Collisional Narrowing of Infrared Water Vapor Transitions,” Appl. Phys. Lett. 21, 303 (1972). [CrossRef]
  4. A. S. Pine, “Collisional Narrowing of HF Fundamental Band Spectral Lines by Neon and Argon,” J. Mol. Spectrosc. 82, 435 (1980). [CrossRef]
  5. P. L. Varghese, R. K. Hanson, “Tunable Diode Laser Measurements of Spectral Parameters of HCN at Room Temperature,” submitted to J. Quant. Spectrosc. Radiat. Transfer.
  6. D-W. Chen, E. R. Niple, S. K. Poultney, “Determining Tunable Diode Laser Spectrometer Performance Through Measurements of N2O Line Intensities and Widths at 7.8 μm,” Appl. Opt. 21, 2906 (1982). [CrossRef] [PubMed]
  7. S. G. Rautian, I. I. Sobelman, “Effect of Collisions on the Doppler Broadening of Spectral Lines,” Sov. Phys. Usp. 9, 701 (1967) [CrossRef]
  8. F. Herbert, “Spectral Line Profile: A Generalized Voigt Function Including Collisional Narrowing,” J. Quant. Spectrosc. Radiat. Transfer 14, 943 (1974). [CrossRef]
  9. E. W. Smith, J. Cooper, W. R. Chapell, T. Dillon, “An Impact Theory for Doppler and Pressure Broadening—I. General Theory,” J. Quant. Spectrosc. Radiat. Transfer 11, 1547; “An Impact Theory for Doppler and Pressure Broadening—II. Atomic and Molecular Systems,” 11, 1567 (1971).
  10. I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer, Berlin, 1981). [CrossRef]
  11. G. J. Nienhuis, “Effects of Radiator Motion in the Classical and Quantum Mechanical Theories of Collisional Spectral-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 20, 275 (1978). [CrossRef]
  12. P. L. Varghese, Tunable Infrared Diode Laser Measurements of Spectral Parameters of Carbon Monoxide and Hydrogen Cyanide, Report 6-83-T, HTGL, Stanford U., Stanford, Calif. (1983).
  13. R. G. Gordon, “Theory of the Width and Shift of Molecular Spectral Lines in Gases,” J. Chem. Phys. 44, 3083 (1966). [CrossRef]
  14. L. Galatry, “Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines,” Phys. Rev. 122, 1218 (1961). [CrossRef]
  15. P. R. Berman, “Quantum-Mechanical Transport Equation for Atomic Systems,” Phys. Rev. A 5, 927 (1972). [CrossRef]
  16. H. M. Pickett, “Effects of Velocity Averaging on the Shapes of Absorption Lines,” J. Chem. Phys. 73, 6090 (1980). [CrossRef]
  17. M. Abramowitz, I. A. Stegun, Eds. Handbook of Mathematical Functions (Dover, New York, 1972).
  18. J. Humlicek, “An Efficient Method for Evaluation of the Complex Probability Function: the Voigt Function and its Derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309 (1979). [CrossRef]
  19. A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978). [CrossRef]
  20. C. D. Rodgers, “Collisional Narrowing: Its Effect on the Equivalent Widths of Spectral Lines,” Appl. Opt. 15, 714 (1976). [CrossRef] [PubMed]
  21. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compliation,” AFCRL-TR-73-0096 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited