OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 15 — Aug. 1, 1984
  • pp: 2477–2481

Potential for coherent Doppler wind velocity lidar using neodymium lasers

Thomas J. Kane, Bingkun Zhou, and Robert L. Byer  »View Author Affiliations

Applied Optics, Vol. 23, Issue 15, pp. 2477-2481 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (732 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Existing techniques for the frequency stabilization of Nd: YAG lasers operating at 1.06 μm, and the high-gain amplification of radiation at that wavelength, make possible the construction of a coherent Doppler wind velocity lidar using Nd:YAG. Velocity accuracy and range resolution are better at 1.06 μm than at 10.6 μm at the same level of the SNR. Backscatter from the atmosphere at 1.06 μm is greater than that at 10.6 μm by ~2 orders of magnitude, but the quantum-limited noise is higher by 100 also. Near-field attenuation and turbulent effects are more severe at 1.06 μm. In some configurations and environments, the 1.06-μm wavelength may be the better choice, and there may be technological advantages favoring the use of solid-state lasers in satellite systems.

© 1984 Optical Society of America

Original Manuscript: October 22, 1983
Published: August 1, 1984

Thomas J. Kane, Bingkun Zhou, and Robert L. Byer, "Potential for coherent Doppler wind velocity lidar using neodymium lasers," Appl. Opt. 23, 2477-2481 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. S. Ray, R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, B. Bumgarner, J. Appl. Meteorol. 14, 1521 (1975). [CrossRef]
  2. R. J. Doviak, C. T. Jobson, J. Geophys. Res. 84, 697 (1979). [CrossRef]
  3. M. J. Post, R. A. Richter, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 60 (1981).
  4. R. M. Huffaker, Ed., “Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System,” NOAA Tech. Mem. ERL WPL-37 (1978).
  5. D. S. Zrnic, IEEE Trans. Geosci. Electron. GE-17, 113 (1979). [CrossRef]
  6. R. V. Hess, P. Brockman, C. H. Bair, L. D. Staton, C. D. Lytle, L. M. Laughman, M. L. Kaplan, Proc. Soc. Photo-Opt. Instrum. Eng. 415, 52 (1983).
  7. G. S. Kent, Institute for Atmospheric Optics & Remote Sensing, Hampton, Va.; personal communication.
  8. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, Appl. Opt. 22, 1655 (1983). [CrossRef] [PubMed]
  9. M. P. McCormick, P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, L. R. McMaster, Bull. Am. Meteorol. Soc. 60, 1038 (1979). [CrossRef]
  10. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, Appl. Opt. 21, 1541 (1982). [CrossRef] [PubMed]
  11. S. F. Clifford, L. Lading, Appl. Opt. 22, 1696 (1983). [CrossRef] [PubMed]
  12. S. F. Clifford, S. M. Wandzura, Appl. Opt. 20, 514 (1981). [CrossRef] [PubMed]
  13. H. G. Danielmeyer, “Progress in Nd:YAG lasers,” in Lasers, Vol. 4, A. K. Levine, A. J. DeMaria, Eds. (Marcel Dekker, New York, 1976).
  14. Y. L. Sun, R. L. Byer, Opt. Lett. 7, 408 (1982). [CrossRef] [PubMed]
  15. P. J. Brannon, F. R. Franklin, E. D. Jones, Appl. Opt. 21, 1758 (1982). [CrossRef] [PubMed]
  16. T. J. Kane, R. C. Eckardt, R. L. Byer, IEEE J. Quantum Electron. QE-19, 1351 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited