OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 15 — Aug. 1, 1984
  • pp: 2633–2637

Optical properties of polycrystalline KRS-5 fiber at individual CO2 laser lines: magnetooptic effects

Heihachi Sato, Eiichi Tsuchida, and Shiro Sakuragi  »View Author Affiliations

Applied Optics, Vol. 23, Issue 15, pp. 2633-2637 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polycrystalline KRS-5 fiber is experimentally investigated for magnetooptic effects such as the Faraday and Voigt effects, extinction coefficient, and natural depolarization at individual vibrational–rotational transitions of 10.6- and 9.6-μm bands in a CO2 laser. The results are, on the average, a Verdet constant of 0.033 and 0.024 min/cm · G, a Voigt constant of 2.5 × 10−6 min/cm · G2, a natural depolarization of ~0.36 and 0.34 deg/cm, and an extinction coefficient of 1.1 and 1.5 dB/m at 10.6- and 9.6-μm bands, respectively. Both magnetooptic effects are also compared with the theoretical estimates obtained using known parameters. The extinction coefficient follows the inverse-square dependence on the wavelength, supporting the remarks by Harrington and Sparks.

© 1984 Optical Society of America

Original Manuscript: August 27, 1983
Published: August 1, 1984

Heihachi Sato, Eiichi Tsuchida, and Shiro Sakuragi, "Optical properties of polycrystalline KRS-5 fiber at individual CO2 laser lines: magnetooptic effects," Appl. Opt. 23, 2633-2637 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Hass, B. Bendow, “Residual Absorption in Infrared Materials,” Appl. Opt. 16, 2882 (1977). [CrossRef] [PubMed]
  2. D. A. Pinnow, A. L. Gentile, A. G. Standlee, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978). [CrossRef]
  3. J. H. Garfunkel, R. A. Skogman, R. A. Walterson, in Technical Digest, 1979 IEEE/OSA Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1979), paper 8.1.
  4. T. J. Bridges, J. S. Hasiak, A. R. Strand, “Single-Crystal AgBr Infrared Optical Fibers,” Opt. Lett. 5, 85 (1980). [CrossRef] [PubMed]
  5. J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Materials for IR Fiber Applications,” Adv. Ceram. 2, 94 (1981).
  6. S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981). [CrossRef] [PubMed]
  7. J. A. Harrington, M. Sparks, “Inverse-Square Wavelength Dependence of Attenuation in Infrared Polycrystalline Fibers,” Opt. Lett. 8, 223 (1983). [CrossRef] [PubMed]
  8. H. Sato, E. Tsuchida, S. Sakuragi, “Dispersive Properties of a Flexible KRS-5 Fiber on Magneto-Optical Effects at Individual CO2 Laser Lines,” Opt. Lett. 8, 180 (1983). [CrossRef] [PubMed]
  9. Influence of multireflection in the form of the Fabry-Perot configuration is, at the least, evaded by merely tilting the fiber with a small Fresnel number.
  10. W. G. Driscoll, Ed., Handbook of Optics (McGraw Hill, New York, 1978), pp 7–108.
  11. K. Ishiguro, Optics (Kyoritsu, Tokyo, 1962), p. 232 (in Japanese).
  12. M. Sparks, “Explanation of λ−2 Optical Scattering and λ−2 Strehl On-Axis Irradiance Reduction,” J. Opt. Soc. Am. 73, 1249 (1983). [CrossRef]
  13. J. A. Harrington, A. G. Standlee, “Attenuation at 10.6 μm in Loaded and Unloaded Polycrystalline KRS-5 Fibers,” Appl. Opt. 22, 3073 (1983). [CrossRef] [PubMed]
  14. H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).
  15. K. Fujiwara, S. Yamaguchi, Optics · Electrooptics II (Asakura, Tokyo, 1970), p. 214, in Japanese.
  16. Since the known refractive index in Ref. 10 is limited to five figures after the decimal point, accuracy of the least-squares fit is necessarily limited for evaluating the second derivative d2n/dλ2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited