OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 17 — Sep. 1, 1984
  • pp: 2892–2901

Fundamental-mode laser-beam propagation in optically inhomogeneous electrochemical media with chemical species concentration gradients

Andreas Mandelis and Barrie S. H. Royce  »View Author Affiliations

Applied Optics, Vol. 23, Issue 17, pp. 2892-2901 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Solutions to Maxwell’s wave equation have been derived for the propagation of the fundamental (Gaussian) mode of a laser beam in a fluid electrolyte which is in contact with an active electrode. An electrochemical or photoelectrochemical reaction at the electrolyte–electrode interface is assumed to generate a concentration gradient of the product in the electrolyte, which results in an inhomogeneous refractive-index profile. The analytic solutions for the propagation of the beam explicitly demonstrate the dependence of the displacement of the intensity centroid and of the spot shape on the electrochemical parameters of the system.

© 1984 Optical Society of America

Original Manuscript: April 5, 1984
Published: September 1, 1984

Andreas Mandelis and Barrie S. H. Royce, "Fundamental-mode laser-beam propagation in optically inhomogeneous electrochemical media with chemical species concentration gradients," Appl. Opt. 23, 2892-2901 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Bard, L. R. Faulkner, Electrochemical Methods (Wiley, New York, 1980).
  2. J. O’M. Bockris, S. U. M. Kahn, Quantum Electrochemistry (Plenum, New York, 1979). [CrossRef]
  3. S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, 1980). [CrossRef]
  4. B. S. H. Royce, S. Sanchez-Sinencio, R. Goldstein, R. Muratore, R. Williams, W. M. Yim, “Studies of Photocorrosion at the ZnSe-Electrolyte Interface by Photothermal Deflection Spectroscopy,” J. Electrochem. Soc. 129, 2393 (1982). [CrossRef]
  5. J. G. Mendoza-Alvarez, B. S. H. Royce, F. Sanchez-Sinencio, O. Zelaya-Angel, C. Menzes, R. Triboulet, “Optical. Properties of CdTe Thin Films Studied by Photothermal Deflection Spectroscopy,” Thin Solid Films 102, 259 (1983). [CrossRef]
  6. J. P. Roger, D. Fournier, A. C. Boccara, at Third International Conference on Photoacoustic and Photothermal Spectroscopy, Paris, Apr. 1983.
  7. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Appl. Phys. Lett. 36, 130 (1980). [CrossRef]
  8. J. C. Murphy, L. C. Aamodt, “Photothermal Spectroscopy Using Optical Beam Probing: Mirage Effect,” J. Appl. Phys. 51, 4580 (1980); J. Appl. Phys. 52, 4903 (1981). [CrossRef]
  9. A. Mandelis, “Absolute Optical Absorption Coefficient Measurements Using Transverse Photothermal Deflection Spectroscopy,” J. Appl. Phys. 54, 3404 (1983). [CrossRef]
  10. J. CrankThe Mathematics of Diffusion (Oxford U.P., London, 1975), Chap. 2.
  11. W. A. Roth, K. Scheel, Eds., Landolt-Boernstein, Physikatisch-Chemische Tabellen, Vol. 2 (Springer, Berlin, 1923), Tables 174, 179, 185, 186.
  12. R. H. Muller, Advances in Electrochemistry and Electrochemical Engineering, Vol. 9 (Wiley, New York, 1973), pp. 281–368.
  13. E. A. J. Marcatili, “Modes in a Sequence of Thick Astigmatic Lens-Like Focusers,” Bell Syst. Tech. J. 44, 2887 (1964).
  14. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U.P., London, 1959), Appendix II.
  15. A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 6.5.
  16. L. W. Casperson, “Gaussian Light Beams in Inhomogeneous Media,” Appl. Opt. 12, 2434 (1973). [CrossRef] [PubMed]
  17. D. L. Kreider, R. G. Kuller, D. R. Ostberg, Elementary Differential Equations (Addison-Wesley, Reading, Mass., 1968), p. 64.
  18. L. W. Casperson, A. Yariv, “The Gaussian Mode in Optical Resonators with a Radial Gain Profile,” Appl. Phys. Lett. 12, 355 (1968). [CrossRef]
  19. J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1981), Chap. 1.
  20. P. Rossi, C. W. McCurdy, R. L. McCreery, “Diffractive Spectroelectrochemistry. Use of Diffracted Light for Monitoring Electrogenerated Chromophores,” J. Am. Chem. Soc. 103, 2524 (1981). [CrossRef]
  21. R. Pruiksma, R. L. McCreery, “Observation of Electrochemical Concentration Profiles by Absorption Spectroelectro-chemistry,” Anal. Chem. 51, 2253 (1979). [CrossRef]
  22. J. T. Knudtson, K. L. Ratzlaff, “Laser Beam Spatial Profile Analysis Using a Two-Dimensional Photodiode Array,” Rev. Sci. Instrum. 54, 856 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited