OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 21 — Nov. 1, 1984
  • pp: 3893–3900

FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for laser remote sensing

Luisa T. Molina and William B. Grant  »View Author Affiliations

Applied Optics, Vol. 23, Issue 21, pp. 3893-3900 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9–12-μm spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-cm−1 resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

© 1984 Optical Society of America

Original Manuscript: June 28, 1984
Published: November 1, 1984

Luisa T. Molina and William B. Grant, "FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for laser remote sensing," Appl. Opt. 23, 3893-3900 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983). [CrossRef]
  2. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  3. G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photoacoustic Spectroscopy,” Rev. Sci. Instrum. 54, 797 (1983). [CrossRef]
  4. D. T. Cassidy, J. Reid, “Atmospheric Pressure Monitoring of Trace Gases Using Tunable Diode Lasers,” Appl. Opt. 21, 1185 (1982). [CrossRef] [PubMed]
  5. H. I. Schiff, D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, “Tunable Diode Laser Systems for Measuring Trace Gases in Trophospheric Air,” Environ. Sci. Technol. 17, 352A (1983). [PubMed]
  6. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “CO2 Laser Absorption Coefficients for Determining Ambient Level of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974). [CrossRef] [PubMed]
  7. R. T. Menzies, “Ozone Spectroscopy with a CO2 Waveguide Laser,” Appl. Opt. 15, 2597 (1976). [CrossRef] [PubMed]
  8. J. Boscher, G. Schafer, W. Wiesemann, “Gasfernanalyse mit CO2-Laser,” Battelle Institut e.V., D-6000 Frankfurt am Main, W. Germany (1979).
  9. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption Coefficients of Various Pollutant Gases at CO2 Laser Wavelengths; Application to the Remote Sensing of those Pollutants,” Appl. Opt. 17, 391 (1978); Erratum, Appl. Opt. 19, 1572 (1980). [CrossRef] [PubMed]
  10. U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and Development of NH3 and C2H4 Absorption Cross Sections at CO2 Laser Wavelengths,” Appl. Opt. 19, 1711 (1980). [CrossRef] [PubMed]
  11. R. J. Brewer, C. W. Bruce, J. L. Mater, “Optoacoustic Spectroscopy of C2H6 at the 9- and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 21, 4092 (1982). [CrossRef] [PubMed]
  12. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980). [CrossRef] [PubMed]
  13. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. OPt. 21, 2275 (1982). [CrossRef] [PubMed]
  14. G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648 (1982). [CrossRef] [PubMed]
  15. P. Andersson, U. Persson, “Absorption Coefficients at CO2 Laser Wavelengths for Toluene, m-sylene, o-xylene, and p-xylene,” Appl. Opt. 23, 192 (1984). [CrossRef] [PubMed]
  16. J. Bosher, G. Schäfer, W. Englisch, W. Wiesemann, “Sulfur Dioxide Absorption Cross Sections for 12C18O2 Laser Lines Around 9 μm,” Appl. Opt. 17, 3347 (1978). [CrossRef]
  17. B. D. Green, J. I. Steinfeld, “Absorption Coefficients for Fourteen Gases at CO2 Laser Frequencies,” Appl. Opt. 15, 1688 (1976). [CrossRef] [PubMed]
  18. M. S. Shumate, R. T. Menzies, J. S. Margolis, L. G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976). [CrossRef] [PubMed]
  19. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure Broadened Water-Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724 (1978). [CrossRef] [PubMed]
  20. J. S. Ryan, M. H. Hubert, R. A. Crane, “Water-Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711 (1983); Erratum, Appl. Opt. 23, 1302 (1984). [CrossRef] [PubMed]
  21. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701 (1983). [CrossRef] [PubMed]
  22. N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983). [CrossRef] [PubMed]
  23. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9- and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978). [CrossRef] [PubMed]
  24. C. Freed, L. C. Bradley, R. G. O’Donnell, “Absolute Frequencies of Lasing Transitions in Seven CO2 Isotopic Species,’ IEEE J. Quantum Electron. QE-16, 1195(1980). [CrossRef]
  25. E. D. Hinkley, R. T. Ku, K. W. Nill, J. F. Butler, “Long-path Monitoring: Advanced Instrumentation with a Tunable Diode Laser,” Appl. Opt. 15, 1653 (1976). [CrossRef] [PubMed]
  26. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982). [CrossRef] [PubMed]
  27. W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982). [CrossRef] [PubMed]
  28. W. B. Grant, E. D. Hinkley, “Laser System for Natural Gas Detection—Phase 1—Laboratory Feasibility Studies,” Annual Report 5035-525 by JPL (July1982).
  29. C. R. Webster, W. B. Grant, “Tunable-Diode-Laser Remote Measurement of Atmospheric Gases Using Topographic Targets,” Appl. Opt. 22, 1952 (1983). [CrossRef] [PubMed]
  30. J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High Sensitivity Detection of Trace Gases at Atmospheric Pressure Using Tunable Diode Lasers,” accepted for publication in Optical & Quantum Electronics, (1984).
  31. G. C. Bjorklund, “Frequency-Modulation Spectroscopy—a New Method for Measuring Weak Absorption and Dispersions,” Opt Lett. 5, 15 (1980). [CrossRef] [PubMed]
  32. E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Techniques for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Transfer 30, 289 (1983). [CrossRef]
  33. W. Lenth, “Optical Heterodyne Spectroscopy with Frequency and Amplitude Modulated Semiconductor Laser,” Opt. Lett. 8, 575 (1983). [CrossRef] [PubMed]
  34. II–VI Inc., Saxonburg Blvd., Saxonburg, Penn. 16056.
  35. G. W. Sachse, P. K. Cheo, “A Microwave Tunable Laser Source for Remote Sensing Applications,” in Technical Digest, Workshop on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited