OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 24 — Dec. 15, 1984
  • pp: 4486–4493

Dispersion in GeO2–SiO2 glasses

James W. Fleming  »View Author Affiliations

Applied Optics, Vol. 23, Issue 24, pp. 4486-4493 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Germania glass was prepared from high purity GeO2 powder. Refractive-index dispersion was used to calculate material dispersion and to provide a model for representing the dispersion of GeO2–SiO2 glasses. The wavelength of zero material dispersion is found to be in agreement with theoretical calculations. Modal propagation is modeled for a GeO2 core–silica clad fiber. Results support compositional dependence of profile dispersion in GeO2–SiO2 fibers.

© 1984 Optical Society of America

Original Manuscript: July 26, 1984
Published: December 15, 1984

James W. Fleming, "Dispersion in GeO2–SiO2 glasses," Appl. Opt. 23, 4486-4493 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Olshansky, G. W. Scherer, Optical Communications Conference, Amsterdam, Sept. 1979, Abstract 1.103.
  2. K. Nassau, “The Material Dispersion Zero in Infrared Optical Waveguide Materials,” Bell Syst. Tech. J. 60, 237 (1981).
  3. H. Osanai et al., “Effect of Dopants on Transmission Loss of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 549 (1976). [CrossRef]
  4. S. H. Wemple, “Material Dispersion in Optical Fibers,” Appl. Opt. 18, 31 (1979). [CrossRef] [PubMed]
  5. D. L. Wood, J. W. Fleming, “Computerized Refractive Index Measurements for Bulk Materials at UV, Visible, and IR Wavelengths,” Rev. Sci. Instrum. 53, 1 (1982). [CrossRef]
  6. W. A. Burnette, C. S. Roberts, AT&T Bell Laboratories, Murray Hill, NJ., private communication.
  7. L. M. Dennis, A. W. Laubengayer, “Germanium XVII. Fused Germanium Dioxide and Some Germanium Glasses,” J. Phys. Chem. 30, 1510 (1926). [CrossRef]
  8. V. A. Kolesova, E. S. Sher, “Two-Component Glasses of the System GeO2–SiO2,” Inorg. Mat. 9, 1018 (1973).
  9. Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978). [CrossRef]
  10. C. R. Kurkjian, R. W. Douglas, “The Viscosity of Glasses in the System Na2O–GeO2,” Phys. Chem. Glasses 1, 19 (1960).
  11. G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber Waveguides,” Sov. J. Quantum Electron. 10, 900 (1980). [CrossRef]
  12. S. H. Wemple et al., “Binary SiO2–B2O3 Glass System: Refractive Index Behavior and Energy Gap Considerations,” J. Appl. Phys. 44, 5432 (1973). [CrossRef]
  13. C. R. Hammond, “Silica-Based Binary Glass Systems: Wavelength Dispersive Properties and Composition in Optical Fibers,” Opt. Quantum Electron. 10, 163 (1978). [CrossRef]
  14. S. Kobayashi, S. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, (1977), p. 309.
  15. R. D. Maurer, P. C. Schultz, U.S. Patent3,844,550 (1975).
  16. J. W. Fleming, E. A. Sigety, “Properties of Glasses in the GeO2–B2O3–SiO2 System,” Abstract, Am. Ceram. Soc. Bull. 53, 664 (1974).
  17. J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. Am. Ceram. Soc. 59, 503 (1976). [CrossRef]
  18. J. W. Fleming, J. R. Simpson, previously unpublished.
  19. I. H. Malitson, “Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55, 1205 (1965). [CrossRef]
  20. R. Olshansky, D. B. Keck, “Pulse Broadening in Graded-Index Optical Fibers,” Appl. Opt. 15, 483 (1976). [CrossRef] [PubMed]
  21. J. A. Arnaud, J. W. Fleming, “Pulse Broadening in Multimode Optical Fibers With Large An/n: Numerical Results,” Electron. Lett. 12, 7 (1976). [CrossRef]
  22. H. M. Presby, I. P. Kaminow, “Binary Silica Optical Fibers: Refractive Index and Profile Dispersion Measurements,” Appl. Opt. 15, 3029 (1976). [CrossRef] [PubMed]
  23. F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979). [CrossRef]
  24. M. G. Kendall, A. Stuart, Advanced Theory in Statistics V. Distribution Theory (Hafner, New York, 1961).
  25. J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electron. Lett. 14, 326 (1978). [CrossRef]
  26. G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).
  27. N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981). [CrossRef]
  28. W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981). [CrossRef]
  29. D. N. Payne, A. H. Hartog, “Determination of the Wavelength of Zero Material Dispersion in Optical Fibers by Pulse-Delay Measurements,” Electron. Lett. 13, 627 (1977). [CrossRef]
  30. L. G. Cohen, C. Lin, “Phase Delay Measurements in the Zero Material Dispersion Wavelength Region for Optical Fibers,” Appl. Opt. 16, 3136 (1977). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited