OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 23, Iss. 3 — Feb. 1, 1984
  • pp: 411–418

Effect of relative humidity on the aerosol backscattering coefficient at 0.694- and 10.6-μm wavelengths

James W. Fitzgerald  »View Author Affiliations


Applied Optics, Vol. 23, Issue 3, pp. 411-418 (1984)
http://dx.doi.org/10.1364/AO.23.000411


View Full Text Article

Enhanced HTML    Acrobat PDF (1065 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of relative humidity on the backscattering of 0.694- and 10.6-μm radiation by aerosol particles in the lower troposphere is modeled. Two models of particle composition are considered: (1) all particles are composed of a uniform mixture of water-soluble material, dustlike material, and soot (uniform internal mixture) and (2) pure soot particles coexist with particles which are mixtures of water-soluble and dustlike materials (external mixture of soot). The amount of soot ranges from 1% to 20% of the volume of the aerosol. Changes in relative humidity have a greater effect on the backscattering coefficient, βπ, at 0.694 μm than at 10.6 μm. If soluble material accounts for 30% of the volume of mixed particles and if an urban type aerosol size distribution is assumed, an increase in relative humidity from 0% to 99% results in an increase in βπ at 0.694 μm ranging from a factor of 5.7 for an external mixture containing 20% soot by volume to a factor of 15.6 in the case of a uniform internal mixture containing 20% soot. At 10.6 μm the increase in βπ ranges from a factor of 2.1 to a factor of 2.8. The backscatter-to-extinction relation for 0.694-μm radiation propagating through a region of varying relative humidity is also investigated.

© 1984 Optical Society of America

History
Original Manuscript: August 22, 1983
Published: February 1, 1984

Citation
James W. Fitzgerald, "Effect of relative humidity on the aerosol backscattering coefficient at 0.694- and 10.6-μm wavelengths," Appl. Opt. 23, 411-418 (1984)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-23-3-411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, Appl. Opt. 21, 2442 (1982). [CrossRef] [PubMed]
  2. D. J. Hoffman, J. M. Rosen, J. Geophys. Res. 88, 3777 (1982). [CrossRef]
  3. G. K. Yue, G. S. Kent, U. O. Farrukh, A. Deepak, Appl. Opt. 22, 1671 (1983). [CrossRef] [PubMed]
  4. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Topics in Applied Physics, Vol. 14 (Springer, Berlin, 1976). [CrossRef]
  5. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  6. J. V. Dave, “Subroutines for Computing the Parameters of Electromagnetic Radiation Scattered by a Sphere,” IBM Palo Alto Scientific Center Report 320-3237 (1968).
  7. W. A. Hoppel, J. W. Fitzgerald, R. E. Larson, “Measurements of Atmospheric Aerosols: Experimental Methods and Results of Measurements Off the East Coast of the United States,” Naval Research Laboratory Report 8703 (1983).
  8. W. A. Hoppel, J. Aerosol Sci. 9, 41 (1978). [CrossRef]
  9. A. P. Waggoner, R. E. Weiss, N. A. Ahlquist, D. S. Covert, S. Will, R. J. Charlson, Atmos. Environ. 15, 1891 (1981). [CrossRef]
  10. R. J. Countess, G. T. Wolff, S. H. Cadle, J. Air Pollut. Control Assoc. 30, 1194 (1980). [CrossRef]
  11. R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, J. Air Pollut. Control Assoc. 31, 247 (1981). [CrossRef]
  12. T. P. Ackerman, O. B. Toon, Appl. Opt. 20, 3661 (1981). [CrossRef] [PubMed]
  13. I. N. Tang, W. T. Wong, H. R. Munkelwitz, Atmos. Environ. 15, 2463 (1981). [CrossRef]
  14. C. Sloane, Atmos. Environ. 17, 409 (1983). [CrossRef]
  15. J. W. Fitzgerald, W. A. Hoppel, M. A. Vietti, J. Atmos. Sci. 39, 1838 (1982). [CrossRef]
  16. D. J. Alofs, M. B. Trueblood, “The Correlation Between Size and Critical Supersaturation Exhibited by CCN in Missouri,” in Proceedings, Conference on Cloud Physics, Nov.1982, Chicago, Ill.
  17. G. Hänel, M. Lehmann, Contrib. Atmos. Phys. 54, 57 (1981).
  18. G. Hänel, Tellus 20, 371 (1968). [CrossRef]
  19. G. Hänel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 73 (1976). (Academic Press, New York, 1976). [CrossRef]
  20. F. E. Volz, J. Geophys. Res. 77, 1017 (1972). [CrossRef]
  21. F. E. Volz, Appl. Opt. 12, 564 (1973). [CrossRef] [PubMed]
  22. E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” Air Force Geophysics Laboratory Report TR-79-0214 (1979).
  23. J. T. Twitty, J. A. Weinman, J. Appl. Meteorol. 10, 725 (1971). [CrossRef]
  24. G. M. Hale, M. R. Querry, Appl. Opt. 12, 555 (1973). [CrossRef] [PubMed]
  25. While the lognormal size distribution is usually given by an expression of the form (A/r) exp[−B ln2(r/rm)], it is noted by N. A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964), p. 13, that the various moments of a lognormal distribution are also lognormal. Thus, the distribution f(r) = A exp[−B ln2(r/rm)], which is obtained by multiplying the standard form by r, is also lognormal.
  26. J. D. Klett, Appl. Opt. 20, 211 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited