OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 7 — Apr. 1, 1984
  • pp: 1032–1039

Radiative transfer in an atmosphere–ocean system: an azimuthally dependent matrix-operator approach

Juergen Fischer and Hartmut Grassl  »View Author Affiliations

Applied Optics, Vol. 23, Issue 7, pp. 1032-1039 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (1033 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Azimuthally dependent shortwave radiance in an atmosphere–ocean system is calculated for different types and concentrations of suspended matter in ocean and atmosphere. The transfer code, the matrix-operator method, is also applied to a rough ocean surface. With emphasis on remote sensing of oceanic constituents conditions for measurements are simulated to estimate the contribution of phytoplankton, sediment, and yellow substances to the ocean-leaving radiance within the 0.415–0.740-μm wavelength interval. The masking of these upward radiances by surface reflection and atmospheric extinction is discussed. In most conditions upward spectral radiance in the nadir direction usually contains the highest proportion of the oceanic underlight, even for an ocean surface roughened by 7-m/sec wind speed at all sun elevations below the mid-latitude noon condition.

© 1984 Optical Society of America

Original Manuscript: November 21, 1983
Published: April 1, 1984

Juergen Fischer and Hartmut Grassl, "Radiative transfer in an atmosphere–ocean system: an azimuthally dependent matrix-operator approach," Appl. Opt. 23, 1032-1039 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Hovis, K. C. Leung, Opt. Eng. 16, 158 (1977). [CrossRef]
  2. E. Raschke, Beitr. Phys. Atmos. 45, 1 (1972).
  3. G. W. Kattawar, T. J. Humphreys, Appl. Opt. 15, 273 (1976). [CrossRef] [PubMed]
  4. H. R. Gordon, Appl. Opt. 17, 1893 (1978). [CrossRef] [PubMed]
  5. H. Quenzel, M. Kaestner, Appl. Opt. 19, 1338 (1980). [CrossRef] [PubMed]
  6. H. R. Gordon, Science 210, 4465, 63 (1980). [CrossRef]
  7. G. N. Plass, G. W. Kattawar, F. E. Catchings, Appl. Opt. 12, 314 (1973). [CrossRef] [PubMed]
  8. S. Chandrasekar, Radiative Transfer (Oxford U.P., London, 1950).
  9. J. H. Fischer, “Fernerkundung von Schwebstofen im Ozean,” Hamburger Geophysikalische Einzelschriften 65, 205 (1983).
  10. G. N. Plass, T. J. Humphreys, G. W. Kattawar, Appl. Opt. 20, 917 (1981). [CrossRef] [PubMed]
  11. C. Cox, W. Munk, J. Opt. Soc. Am. 44, 838 (1954). [CrossRef]
  12. H. Neckel, D. Labs, Sol. Phys. 74, 231 (1981). [CrossRef]
  13. G. Haenel, H. Bullrich, Beitr. Phys. Atmos. 51, 129 (1978).
  14. E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183 (1976).
  15. A. Morel, Optical Properties of Pure Water and Pure Sea Water, N. G. Jerlov, E. Steemann Nielsen, Ed. (Academic, New York, 1974), p. 494.
  16. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).
  17. L. Prieur, S. Sathyendranath, Linmol. Oceanogr. 26, 671 (1981). [CrossRef]
  18. N. K. Hojerslev, in Proceedings, Workshop on Eurasep OCS Experiment (1979), p. 13.
  19. R. Klotz, Reports Sonderforschungsbereich 95, No. 46 (Kiel U., 1978).
  20. G. N. Plass, G. W. Kattawar, J. A. Guinn, Appl. Opt. 14, 1924 (1975). [CrossRef] [PubMed]
  21. R. C. Smith, in Structure of Solar Radiation in the Upper Layers of the Sea, N. G. Jerlov, E. Steemann Nielson, Eds. (Academic, New York, 1974), p. 494.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited