OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 23, Iss. 9 — May. 1, 1984
  • pp: 1412–1417

Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets

Pierre H. Flamant, Robert T. Menzies, and Michael J. Kavaya  »View Author Affiliations

Applied Optics, Vol. 23, Issue 9, pp. 1412-1417 (1984)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.

© 1984 Optical Society of America

Original Manuscript: November 14, 1983
Published: May 1, 1984

Pierre H. Flamant, Robert T. Menzies, and Michael J. Kavaya, "Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets," Appl. Opt. 23, 1412-1417 (1984)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chap. 2. [CrossRef]
  2. P. A. Pincus, M. E. Fossey, J. F. Holmes, J. R. Kerr, “Speckle propagation through turbulence: experimental,” J. Opt. Soc. Am. 68, 760 (1978). [CrossRef]
  3. C. M. McIntyre, M. H. Lee, J. H. Churnside, “Statistics of irradiance scattered from a diffuse target containing multiple glints,” J. Opt. Soc. Am. 70, 1084 (1980). [CrossRef]
  4. J. F. Holmes, M. H. Lee, J. R. Kerr, “Effect of the log-amplitude covariance function on the statistics of speckle propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 70, 355 (1980). [CrossRef]
  5. V. S. Rao Gudimetla, J. F. Holmes, “Probability density function of the intensity for a laser-generated speckle field after propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 72, 1213 (1982). [CrossRef]
  6. J. F. Holmes, “The Effects of Target Induced Speckle, Atmospheric Turbulence, and Beam Pointing Jitter on the Errors in Remote Sensing Measurements,” in Technical Digest Workshop on Optical and Laser and Remote Sensing, Monterey, Calif., Feb. 1982.
  7. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.
  8. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental comparison of heterodyne and direction detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682 (1983). [CrossRef] [PubMed]
  9. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurment of tropospheric ozone,” Appl. Opt. 20, 545 (1981). [CrossRef] [PubMed]
  10. J. L. Bufton, T. Itabe, D. A. Grolemund, “Dual-wavelength correlation measurements with an airborne pulsed carbon dioxide lidar system,” Opt. Lett. 7, 584 (1982). [CrossRef] [PubMed]
  11. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292 (1981). [CrossRef] [PubMed]
  12. P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983). [CrossRef]
  13. M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982). [CrossRef]
  14. G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975) Chap. 3. [CrossRef]
  15. N. George, “The Wavelength Sensitivity of Back-Scattering,” Opt. Commun. 16, 328 (1976). [CrossRef]
  16. J. H. Friedman, “Data Analysis Techniques for High Energy Particle Physics,” Stanford University Report SLAC-176 UC-34d (Sept.1974).
  17. D. O. Loftsgaarden, C. P. Quesenberry, “A Nonparametric Estimate of a Multivariate Density Function,” Ann. Math. Stat. 36, 1049 (1965). [CrossRef]
  18. K. Fukunaga, L. D. Hostetler, “Optimization of k-Nearest-Neighbor Density Estimates,” IEEE Trans. Inf. Theory IT-19, 320 (1973). [CrossRef]
  19. J. Y. Wang, “Laboratory Target Reflectance Measurements for Coherent Laser Radar Applications,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuB5.
  20. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited