OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 24, Iss. 1 — Jan. 1, 1985
  • pp: 34–37

Variable linewidth high-power TEA CO2 laser

F. J. Duarte  »View Author Affiliations

Applied Optics, Vol. 24, Issue 1, pp. 34-37 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A variable linewidth high-power TEA CO2 laser, utilizing a multiple-prism beam expander in conjunction with a Littrow-mounted grating, is described. Linewidths of ∼250-MHz (FWHM) at a total output energy exceeding 250 mJ have been obtained at the P20 (00°1—10°0), λ = 10.59-μm line. Laser linewidths can be varied continuously in the 250–650-MHz range for a corresponding change in output energy from 250 to 400 mJ. The present frequency selectivity method, which employs ZnSe prisms, can be applied directly to considerably higher-power CO2 lasers.

© 1985 Optical Society of America

Original Manuscript: July 30, 1984
Published: January 1, 1985

F. J. Duarte, "Variable linewidth high-power TEA CO2 laser," Appl. Opt. 24, 34-37 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Weiss, L. S. Goldberg, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” ” IEEE J. Quantum Electron. QE-8, 757 (1972). [CrossRef]
  2. C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974). [CrossRef]
  3. P. Mathieu, J. R. Izatt, “Narrow-Band CO2-TEA Laser for Efficient FIR Laser Pumping,” IEEE J. Quantum Electron. QE-13, 465 (1977). [CrossRef]
  4. J. P. Nicholson, K. S. Lipton, “A Tunable Stabilized Single-Mode TEA CO2 Laser,” Appl. Phys. Lett. 31, 430 (1977). [CrossRef]
  5. N. Lee, R. L. Aggarwal, “Single Longitudinal Mode TEA CO2 Laser with Tilted Intracavity Etalon,” Appl. Opt. 16, 2620 (1977). [CrossRef] [PubMed]
  6. P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979). [CrossRef]
  7. P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981). [CrossRef]
  8. A. Girard, “The Effects of the Insertion of a CW, Low-Pressure CO2 Laser into a TEA CO2 Laser Cavity,” Opt. Commun. 11, 346 (1974). [CrossRef]
  9. A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975). [CrossRef]
  10. J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977). [CrossRef]
  11. R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.
  12. A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973). [CrossRef]
  13. F. J. Duarte, J. A. Piper, “A Double-Prism Beam Expander for Pulsed Dye Lasers,” Opt. Commun. 35, 100 (1980). [CrossRef]
  14. F. J. Duarte, J. A. Piper, “Prism Preexpanded Grazing-Incidence Grating Cavity for Pulsed Dye Lasers,” Appl. Opt. 20, 2113 (1981). [CrossRef] [PubMed]
  15. F. J. Duarte, J. A. Piper, “Dispersion Theory of Multiple-Prism Beam Expanders for Pulsed Dye Lasers,” Opt. Commun. 43, 303 (1982). [CrossRef]
  16. W. G. Driscoll, Ed., Handbook of Optics (McGraw-Hill, New York, 1978).
  17. The low finesse of the etalon plates may introduce some uncertainty in the linewidth measurements (by a factor of 1.5–2 at the worst). However, at the optimum configuration, laser action was restricted to a double mode pattern (with mode separation of 85 MHz) thus indicating that quoted linewidths are consistent with observed temporal behavior.
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  19. II–VI, Inc.; private communication.
  20. F. J. Duarte, J. A. Piper, “Multi-Pass Dispersion Theory of Prismatic Pulsed Dye Lasers,” Opt. Acta 31, 331 (1984). [CrossRef]
  21. F. J. Duarte, J. A. Piper, “Narrow Linewidth, High prf Copper Laser-Pumped Dye-Laser Oscillators,” Appl. Opt. 23, 1391 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited