OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 14 — Jul. 15, 1985
  • pp: 2241–2251

Species concentration measurements using CARS with nonresonant susceptibility normalization

Roger L. Farrow, Robert P. Lucht, Gary L Clark, and Richard E. Palmer  »View Author Affiliations


Applied Optics, Vol. 24, Issue 14, pp. 2241-2251 (1985)
http://dx.doi.org/10.1364/AO.24.002241


View Full Text Article

Enhanced HTML    Acrobat PDF (1664 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An investigation of in situ background normalization for obtaining sensitive and accurate concentration measurements with coherent anti-Stokes Raman spectroscopy (CARS) is reported. Flame species concentrations measured with CARS were in good agreement with IR laser absorption measurements of CO in extracted flame gases and with equilibrium calculations. Time-averaged detectivity for CO at the 1000-ppm level was obtained at 1900 K. Background normalization was also shown to be capable of improving CARS pulse-to-pulse signal reproducibility nearly to the shot-noise limit. We consider factors important for concentration measurements with CARS, including laser-induced Stark effects, accuracy of susceptibility calculations, and effects of different laser linewidth models.

© 1985 Optical Society of America

History
Original Manuscript: March 6, 1985
Published: July 15, 1985

Citation
Roger L. Farrow, Robert P. Lucht, Gary L Clark, and Richard E. Palmer, "Species concentration measurements using CARS with nonresonant susceptibility normalization," Appl. Opt. 24, 2241-2251 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-14-2241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979). [CrossRef]
  2. R. E. Teets, J. H. Bechtel, “CARS Spectra of Oxygen Atoms in Flames,” Opt. Lett. 6, 458 (1981). [CrossRef] [PubMed]
  3. L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983). [CrossRef]
  4. R. L. Farrow, P. L. Mattern, L. A. Rahn, “Comparison between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame,” Appl. Opt. 21, 3119 (1982). [CrossRef] [PubMed]
  5. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Teller, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984). [CrossRef] [PubMed]
  6. B. Attal, M. Pealat, J. P. Taran, “CARS Diagnostics of Combustion,” AIAA-80-0282 (1980).
  7. F. S. Moya, “Flame Investigation by CARS,” Prog. Astronaut. Aeronaut. 53, 549 (1977).
  8. A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity with and without Nonresonance Background Suppression,” Combust. Sci. Technol. 25, 175 (1981). [CrossRef]
  9. R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979). [CrossRef]
  10. J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979). [CrossRef]
  11. R. L. Farrow, P. L. Mattern, L. A. Rahn, “Crossed-beam,Background-free CARS Measurement in a Methane Diffusion Flame,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 668–69.
  12. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980). [CrossRef] [PubMed]
  13. Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741 (1980). [CrossRef]
  14. L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979). [CrossRef]
  15. S. A. J. Druet, J.-P. E. Taran, “CARS Spectroscopy,” Prog.Quantum Electron. 7, 1 (1981). [CrossRef]
  16. P. L. Varghese, R. K. Hanson, “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode Laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339 (1981). [CrossRef]
  17. G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983). [CrossRef]
  18. L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.
  19. L. A. Rahn, Sandia National Laboratories, Livermore; private communication.
  20. Fully resolved flame spectra from Ref. 18 show little line overlap.
  21. G. Guelachvili, “Absolute Wavenumbers and Molecular Constants of the Fundamentals Bands of 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O, and of the 2–1 Bands of 12C16O and 13C16O. Around 5 μm, by Fourier Spectroscopy Under Vacuum,” J. Mol. Spectrosc. 75, 251 (1979). [CrossRef]
  22. D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985). [CrossRef]
  23. T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980). [CrossRef]
  24. T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983). [CrossRef]
  25. G. J. Rosasco, W. S. Hurst, “Measurement of Resonant and Nonresonant Third Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” to be published in Phys. Rev. A00, 000 (1985).
  26. R. L. Farrow, L. A. Rahn, “Interpreting CARS Spectra Measured with Multi-mode Nd:YAG Pump Lasers,” to be published in J. Opt. Soc. Am. B.
  27. W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967). [CrossRef]
  28. See the discussion in Refs. 24 and 25. This correction factor includes a factor of 3 due to different definitions of the nonresonant susceptibility. (We are using the notation of Ref. 9.)
  29. H. W. Schrotter, H. W. Klockner, in “Raman Spectroscopy of Gases and Liquids,” A. Weber, Ed. (Springer, New York, 1979), pp. 123–201. [CrossRef]
  30. N. J. Bridge, A. D. Buckingham, “Polarization of Laser Light Scattered by Gases,” Proc. R. Soc. London Ser. A 295, 334 (1966). [CrossRef]
  31. H. Kataoka, S. Maeda, C. Hirose, “Effects of Laser Linewidth on the CARS Spectral Profile,” Appl. Spectrosc. 36, 565 (1982). [CrossRef]
  32. R. E. Teets, “Accurate Convolutions of CARS Spectra,” Opt. Lett. 9, 226 (1984). [CrossRef] [PubMed]
  33. Y. A. Yuratich, “Effects of Laser Linewidth on CARS,” Mol. Phys. 38, 625 (1979). [CrossRef]
  34. R. J. Hall, A. C. Eckbreth, “CARS: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.
  35. R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982). [CrossRef]
  36. L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980). [CrossRef]
  37. R. L. Farrow, L. A. Rahn, “Optical Stark Effects in Nonlinear Raman Spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, Eds. (Wiley, New York, 1982), pp. 159–60.
  38. R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983). [CrossRef]
  39. A. Owyoung, Sandia National Laboratories, Livermore; private communication.
  40. J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, “Investigation of the CARS Spectrum of Carbon Monoxide at High Pressure and Temperature,” Air Force Rocket Propulsion Laboratory Technical Report TR-84-042 (1984).
  41. S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Tech. 24, 227 (1981). [CrossRef]
  42. P. C. Malte, J. C. Kramlich, “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn from Flame Zones,” Combust. Sci. Tech. 22, 263 (1980). [CrossRef]
  43. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on CARS Intensities,” Opt. Lett. 9, 223 (1984). [CrossRef] [PubMed]
  44. R. L. Farrow, L. A. Rahn, R. P. Lucht, in Proceedings, Ninth International Conference on Raman Spectroscopy, M. Tsuboi, Ed. (Chemical Society of Japan, Tokyo, 1984), pp. 340–41.These results show that the effect of field statistics appears to be less pronounced for overlapping Q-branch transitions in comparison to isolated lines.
  45. The dequil program was modified by R. J. Kee, Sandia National Laboratories, from the program stanjan, developed by W. C. Reynolds, Stanford University.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited