OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 24, Iss. 15 — Aug. 1, 1985
  • pp: 2300–2303

Temperature dependence of the Faraday effect in As–S glass fiber

Heihachi Sato, Masatoshi Kawase, and Mitsunori Saito  »View Author Affiliations

Applied Optics, Vol. 24, Issue 15, pp. 2300-2303 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature dependence of the Faraday effect is investigated for As2S3 fiber at 3.39 μm, obtaining a Verdet constant V of 1.62 × 10−2 min/cm · G at room temperature and a temperature-dependence term coefficient of 10.67 min · K/cm · G in the experiments. The V value obtained at 25°C is consistent with the theoretical estimates based on the first derivative of known refractive indices with respect to the wavelength. The temperature-dependent term is also discussed theoretically.

© 1985 Optical Society of America

Original Manuscript: March 15, 1985
Published: August 1, 1985

Heihachi Sato, Masatoshi Kawase, and Mitsunori Saito, "Temperature dependence of the Faraday effect in As–S glass fiber," Appl. Opt. 24, 2300-2303 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978). [CrossRef]
  2. J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).
  3. T. J. Bridges, J. S. Hasiak, A. R. Strnad, “Single-Crystal AgBr Infrared Optical Fibers,” Opt. Lett. 5, 85 (1980). [CrossRef] [PubMed]
  4. S. Sakuragi et al., “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981). [CrossRef] [PubMed]
  5. H. Sato, E. Tsuchida, S. Sakuragi, “Dispersive Properties of a Flexible KRS-5 Fiber on Magneto-Optical Effects at Individual CO2 Laser Lines,” Opt. Lett. 8, 180 (1983). [CrossRef] [PubMed]
  6. H. Sato, E. Tsuchida, S. Sakuragi, “Optical Properties of Polycrystalline KRS-5 Fiber at Individual CO2 Laser Lines: Magnetooptic Effects,” Appl. Opt. 23, 2633 (1984). [CrossRef] [PubMed]
  7. H. Sato, E. Tsuchida, M. Saito, “Magnetooptic-Effect Analysis of Optical Fibers Using Intracavity Scheme: Application to KRS-5 in IR Regions,” Jpn. J. Appl. Phys. 24, 214 (1985). [CrossRef]
  8. H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).
  9. See, for example, C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), p. 435.
  10. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), p. 6–54.
  11. J. A. Davis, R. M. Bunch, “Temperature Dependence of the Faraday Rotation of Hoya FR-5 Glass,” Appl. Opt. 23, 633 (1984). [CrossRef] [PubMed]
  12. T. Arai, M. Kikuchi, “Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber,” Opt. 23, 3017 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited