OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 15 — Aug. 1, 1985
  • pp: 2380–2390

Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations: algorithm for multiple orders

Steven C. Hill, Craig K. Rushforth, Robert E. Benner, and Peter R. Conwell  »View Author Affiliations


Applied Optics, Vol. 24, Issue 15, pp. 2380-2390 (1985)
http://dx.doi.org/10.1364/AO.24.002380


View Full Text Article

Enhanced HTML    Acrobat PDF (1492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An algorithm for determining the size of dielectric spheres and cylinders by aligning measured and computed resonance locations is presented. The orders of the resonance locations need not be known a priori. The algorithm is applicable to several types of scattering and emission spectra of spheres and cylinders if the index of refraction including dispersion is known and uniform, or nearly uniform, throughout the sphere or cylinder. The algorithm performs well when tested with groups of computed resonance locations of spheres (synthetic data) and with measured fluorescence emission spectra of spheres exhibiting as many as 5 orders of resonance.

© 1985 Optical Society of America

History
Original Manuscript: March 5, 1985
Published: August 1, 1985

Citation
Steven C. Hill, Craig K. Rushforth, Robert E. Benner, and Peter R. Conwell, "Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations: algorithm for multiple orders," Appl. Opt. 24, 2380-2390 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-15-2380


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, “Observations of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977). [CrossRef]
  2. P. Chylek, J. T. Kiehl, M. K. W. Ko, “Optical Levitation and Partial-Wave Resonances,” Phys. Rev. A 18, 2229 (1978). [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, “Observations of Optical Resonances of Dielectric Spheres by Light Scattering,” Appl. Opt. 20, 1803 (1981). [CrossRef] [PubMed]
  4. P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous Determination of Refractive Index and Size of Spherical Dielectric Particles from Light Scattering Data,” Appl. Opt. 22, 2302 (1983). [CrossRef] [PubMed]
  5. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475 (1980). [CrossRef]
  6. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural Resonances Observed in the Fluorescence Emission from Small Spheres on Substrates,” Appl. Opt. 23, 1680 (1984). [CrossRef] [PubMed]
  7. R. Thurn, W. Kiefer, “Raman-Microsampling Technique Applying Optical Levitation by Radiation Pressure,” Appl. Spectrosc. 38, 78 (1984). [CrossRef]
  8. J. B. Snow, S.-X. Qian, R. K. Chang, “Stimulated Raman Scattering from Individual Water and Ethanol Droplets at Morphology-Dependent Resonances,” Opt. Lett. 10, 37 (1985). [CrossRef] [PubMed]
  9. J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of Optical-Fiber Diameter from Resonances in the Elastic Scattering Spectrum,” Opt. Lett. 6, 272 (1981). [CrossRef] [PubMed]
  10. A. Ashkin, J. M. Dziedzic, R. H. Stolen, “Outer Diameter Measurement of Low Birefringence Optical Fibers by a New Resonant Backscatter Technique,” Appl. Opt. 20, 2299 (1981). [CrossRef] [PubMed]
  11. J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-Dependent Resonances in Raman Scattering, Fluorescence Emission, and Elastic Scattering from Microparticles,” Aerosol Sci. Technol. 1, 293 (1982). [CrossRef]
  12. P. W. Barber, J. F. Owen, R. K. Chang, “Resonant Scattering for Characterization of Axisymmetric Dielectric Objects,” IEEE Trans Antennas Propag. AP-30, 168 (1982). [CrossRef]
  13. P. R. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “An Efficient Automated Algorithm for the Sizing of Dielectric Microspheres Using the Resonance Spectrum,” J. Opt. Soc. Am. A 1, 1181 (1984). [CrossRef]
  14. H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and Fluorescent Scattering by Molecules Embedded in Small Particles,” Phys. Rev. A 13, 396 (1976). [CrossRef]
  15. M. Kerker, S. D. Druger, “Raman and Fluorescent Scattering by Molecules Embedded in Spheres with Radii Up to Several Multiples of the Wavelength,” Appl. Opt. 18, 1172 (1979). [CrossRef] [PubMed]
  16. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant Spectra of Dielectric Spheres,” J. Opt. Soc. Am. A 1, 62 (1984). The order of a resonance refers to a particular solution of the characteristic equation of the scatterer (or, equivalently, to a particular pole in a coefficient of the field). In this paper, the lowest frequency resonances that are sharp enough to be distinguished from the background in a computed elastic scattering spectrum are termed the first-order resonances. [CrossRef]
  17. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Laser Emission from Individual Droplets at Wavelengths Corresponding to Morphology-Dependent Resonances,” Opt. Lett. 9, 499 (1984). [CrossRef] [PubMed]
  18. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 554–557.
  19. R. Fuchs, K. L. Kliewer, “Optical Modes of Vibration in an Ionic Crystal Sphere,” J. Opt. Soc. Am. 58, 319 (1968). [CrossRef]
  20. J. S. Kim, S. S. Lee, “Scattering of Laser Beams and the Optical Potential Well for a Homogeneous Sphere,” J. Opt. Soc. Am. 73, 303 (1983). [CrossRef]
  21. H. Chew, D.-S. Wang, M. Kerker, “Elastic Scattering of Evanescent Electromagnetic Waves,” Appl. Opt. 18, 2679 (1979). [CrossRef] [PubMed]
  22. M. Kerker, “Resonances in Electromagnetic Scattering by Objects with Negative Absorbtion,” Appl. Opt. 18, 1180 (1979). The analysis is for cylinders; the same arguments hold for spheres. [CrossRef] [PubMed]
  23. A. J. Wilson, C. I. Franks, I. L. Freeston, “Algorithms for the Detection of Breaths from Respiratory Waveform Recordings of Infants,” Med. Biol. Eng. Comput. 20, 286 (1982). [CrossRef] [PubMed]
  24. M. A. Fischler, R. A. Elschlager, “The Representation and Matching of Pictorial Structures,” IEEE Trans. Comput. C-22, 67 (1973). [CrossRef]
  25. R. W. Christiansen, C. K. Rushforth, “Detecting and Locating Key Words in Continuous Speech Using Linear Predictive Coding,” IEEE Trans. Acoust. Speech Signal Process. ASSP-25, 361 (1977). [CrossRef]
  26. We use x = 2πr/λ to facilitate the presentation. In the actual implementation of the algorithm, the medium surrounding the sphere is assumed to have a linear dispersion. See note at end of Appendix B.
  27. R. H. Boundy, R. F. Boyer, S. M. Stoesser, Eds., Styrene: its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952), p. 524.
  28. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Interscience, New York, 1983).
  29. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and Condensation Rates of Liquid Droplets Deduced from Structure Resonances in the Fluorescence Spectra,” Opt. Lett. 9, 273 (1984). [CrossRef] [PubMed]
  30. J. V. Dave, “Scattering of Electromagnetic Radiation by a Large, Absorbing Sphere,” IBM J. Res. Dev. 13, 302 (1969). [CrossRef]
  31. O. B. Toon, T. P. Ackerman, “Algorithms for the Calculation of Scattering by Stratified Spheres,” Appl. Opt. 20, 3657 (1981). [CrossRef] [PubMed]
  32. G. W. Kattawar, G. N. Plass, “Electromagnetic Scattering from Absorbing Spheres,” Appl. Opt. 6, 1377 (1967). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited