OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 17 — Sep. 1, 1985
  • pp: 2792–2796

Photothermal lens aberration effects in two laser thermal lens spectrophotometry

Stephen E. Bialkowski  »View Author Affiliations


Applied Optics, Vol. 24, Issue 17, pp. 2792-2796 (1985)
http://dx.doi.org/10.1364/AO.24.002792


View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparison of theories describing two laser photothermal lens signals is given. The aberrant nature of this lens is accounted for in a theory which treats the propagation of a monitor laser in terms of a phase shift in this laser beam wave front. The difference between theories are discussed in terms of the predicted signal strengths and temporal behavior. The aberrant theory results in smaller theoretical signal strengths and different functional relationships between signal and analyte level.

© 1985 Optical Society of America

History
Original Manuscript: April 3, 1985
Published: September 1, 1985

Citation
Stephen E. Bialkowski, "Photothermal lens aberration effects in two laser thermal lens spectrophotometry," Appl. Opt. 24, 2792-2796 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-17-2792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. L. Fang, R. L. Swofford “The Thermal Lens in Absorption Spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), Chap. 3.
  2. A. J. Twarowski, D. S. Kliger, “Multiphoton Absorption Spectra Using Thermal Blooming,” Chem. Phys. 20, 253 (1977). [CrossRef]
  3. K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982). [CrossRef]
  4. C. A. Carter, J. M. Harris, “Comparison of Models Describing the Thermal Lens Effect,” Anal. Chem. 55, 1256 (1983). [CrossRef]
  5. G. R. Long, S. E. Bialkowski, “Pulsed Infrared Laser Thermal Lens Spectrophotometric Determination of Trace-Level Analytes,” Anal. Chem. 56, 2806 (1984). [CrossRef]
  6. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy,” Appl. Opt. 20, 1333 (1981). [CrossRef] [PubMed]
  7. D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979). [CrossRef] [PubMed]
  8. R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981). [CrossRef]
  9. R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982). [CrossRef]
  10. M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited