OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 17 — Sep. 1, 1985
  • pp: 2837–2841

Laser remote sensing of atmospheric ammonia using a CO2 lidar system

Alan P. Force, Dennis K. Killinger, William E. DeFeo, and Norman Menyuk  »View Author Affiliations


Applied Optics, Vol. 24, Issue 17, pp. 2837-2841 (1985)
http://dx.doi.org/10.1364/AO.24.002837


View Full Text Article

Enhanced HTML    Acrobat PDF (690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A CO2 differential-absorption lidar system has been used for the remote sensing of ammonia in the atmosphere. For CO2 lidar returns backscattered from topographic targets at ranges up to 2.7 km, the path-averaged sensitivity of the DIAL system was 5 ppb of NH3. Concentrations of atmospheric ammonia were found to vary during the day from undetectable levels (<5 ppb) to as high as 20 ppb, depending on temperature and humidity conditions.

© 1985 Optical Society of America

History
Original Manuscript: March 11, 1985
Published: September 1, 1985

Citation
Alan P. Force, Dennis K. Killinger, William E. DeFeo, and Norman Menyuk, "Laser remote sensing of atmospheric ammonia using a CO2 lidar system," Appl. Opt. 24, 2837-2841 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-17-2837


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978). [CrossRef] [PubMed]
  2. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981). [CrossRef]
  3. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote Sensing of NO Using a Differential Absorption Lidar,” Appl. Opt. 19, 3282 (1980). [CrossRef] [PubMed]
  4. R. A. Baumgartner, R. L. Byer, “Remote SO2 Measurements at 4 μm with a Continuously Tunable Source,” Opt. Lett. 2, 163 (1978). [CrossRef] [PubMed]
  5. K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979). [CrossRef]
  6. R. C. Harriss, J. T. Michaels, “Sources of Atmospheric Ammonia,” in Second Symposium, Composition of the Nonurban Troposphere (1982).
  7. R. Abbas, R. L. Tanner, “Continuous Determination of Gaseous Ammonia in the Ambient Atmosphere Using Fluorescence Derivatization,” Atmos. Environ. 15, 277 (1981). [CrossRef]
  8. N. C. Lau, R. J. Charlson, “Discrepancy Between Background Atmospheric Ammonia Gas Measurement and Existence of Acid Sulfate as a Dominant Atmospheric Aerosol,” Atmos. Environ. 11, 475 (1977). [CrossRef]
  9. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 lidar Returns,” Opt. Lett. 6, 301 (1981). [CrossRef] [PubMed]
  10. N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983). [CrossRef] [PubMed]
  11. N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980). [CrossRef]
  12. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “Carbon Dioxide Laser Absorption Coefficients for Determining Ambient Levels of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974). [CrossRef] [PubMed]
  13. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9-μm and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978). [CrossRef] [PubMed]
  14. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).
  15. A. G. Kjelass, P. E. Nordal, A. Bjerkestrand, “Scintillation and Multiwavelength Coherence Effects in a Long-Path Laser Absorption Spectrometer,” Appl. Opt. 17, 277 (1978). [CrossRef]
  16. J. G. Hawley, D. D. Powell, D. E. Cooper, “Absorption Coefficient of Ammonia for Laser Remote Sensing of Atmospheric Trace Quantities,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC28.
  17. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption Coefficients of Various Pollutant Gases At CO2 Laser Wavelengths; Application to the Remote Sensing of Those Pollutants,” Appl. Opt. 17, 391 (1978). [CrossRef] [PubMed]
  18. H. Israel, G. W. Israel, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, Mich., 1974).
  19. J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: the Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 3941 (1981). [CrossRef] [PubMed]
  20. B. Nilsson, “Meteorological Influence on Aerosol Extinction in the 0.2–40-μm Wavelength Range,” Appl. Opt. 18, 3457 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited