OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 24, Iss. 18 — Sep. 15, 1985
  • pp: 3088–3093

Shearing stellar interferometer. 1: Digital data analysis scheme

Erez Ribak and Elia Leibowitz  »View Author Affiliations

Applied Optics, Vol. 24, Issue 18, pp. 3088-3093 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (871 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to extract the visibility of celestial objects in real time using a parallel-shear interferometer is described. Such an instrument produces fringes of constant visibility but with random atmospheric-induced phases. The fringes are modulated internally, and synchronuous detection with many parallel channels recovers their contrast. First, we perform parallel sine and cosine phase-locked accumulation for the short period in which the atmosphere is presumed frozen. The visibility amplitude is then calculated allowing for Poisson noise. We find that a 7.8m star can be resolved by a single detector to the diffraction limit of the telescope; with twenty such detectors, the limit is 10m.

© 1985 Optical Society of America

Original Manuscript: October 27, 1984
Published: September 15, 1985

Erez Ribak and Elia Leibowitz, "Shearing stellar interferometer. 1: Digital data analysis scheme," Appl. Opt. 24, 3088-3093 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ribak, E. Leibowitz, E. K. Hege, “Shearing Stellar Interferometer. 2: Optoelectronic Phase-Locked System,” Appl. Opt. 24, 3094 (1985). [CrossRef] [PubMed]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1976).
  3. S. G. Lipson, H. Lipson, Optical Physics (Cambridge U. P., London, 1983).
  4. A. Labeyrie, “High Resolution Techniques in Optical Astronomy,” Prog. Opt. 13, 49 (1976).
  5. W. J. Tango, R. Q. Twiss, “Michelson Stellar Interferometry,” Prog. Opt. 17, 239 (1980). [CrossRef]
  6. F. Roddier, “The Effects of Atmospheric Turbulence in Optical Astronomy,” Prog. Opt. 19, 281 (1981). [CrossRef]
  7. R. H. T. Bates, “Astronomical Speckle Imaging,” Phys. Rep. 90, 203 (1982). [CrossRef]
  8. N. J. Woolf, “High Resolution Imaging from the Ground,” Ann. Rev. Astron. Astrophys. 20, 367 (1982). [CrossRef]
  9. J. C. Dainty, Ed., “Stellar Speckle Interferometry,” in Laser Speckle and Related Phenomena (Springer-Verlag, New York, 1983).
  10. C. Roddier, F. Roddier, “Fringe Visibility in a Michelson Interferometer,” J. Opt. Soc. Am. 66, 580 (1976). [CrossRef]
  11. J. J. Burke, J. B. Breckinridge, “Passive Imaging Through the Turbulent Atmosphere: Fundamental Limits on the Spatial Frequency Resolution of a Rotational Shearing Interferometer,” J. Soc. Opt. Am. 68, 67 (1978). [CrossRef]
  12. J. L. Elliot, I. S. Glass, “A Quantitative Fringe Detector for Stellar Interferometry,” Astron. J. 75, 1123 (1970). [CrossRef]
  13. W. S. Finsen, “Twenty Years of Double Star Interferometry and its Lessons,” Astrophys. Space Sci. 11, 13 (1971). [CrossRef]
  14. W. C. Wickes, R. H. Dicke, “An Automatic Interferometer for Double Star Observations,” Astron. J. 78, 757 (1973). [CrossRef]
  15. W. C. Wickes, R. H. Dicke, “Achromatic Double Star Interferometry,” Astron. J. 79, 1433 (1974). [CrossRef]
  16. D. G. Currie, “On the Amplitude Interferometer Program at the University of Maryland,” IAU Colloquium 50, 7-1 (Maryland, 1978).
  17. E. S. Kulagin, “A Superposed-Ray Interferometer,” Sov. Astron. 13, 1023 (1970).
  18. D. Kelsall, “Optical “Seeing” Through the Atmosphere by an Interferometric Technique,” J. Opt. Soc. Am. 63, 1472 (1973). [CrossRef]
  19. J. C. Dainty, R. J. Scadden, “Measurement of the Atmospheric Transfer Function at Mauna Kea, Hawaii,” Mon. Not. R. Astron. Soc. 170, 519 (1975).
  20. J. B. Breckinridge, “A Two-Dimensional White-Light Interferometer,” IAU Colloquium50, 31 (Maryland, 1978).
  21. F. Roddier, “Rotation-Shearing Interferometry,” IAU Colloquium50, 32-1 (Maryland, 1978).
  22. A. A. Tokovinin, “A Phase-Grating Stellar Interferometer,” Sov. Astron. Lett. 4, 229 (1979).
  23. E. Ribak, S. G. Lipson, “Complex Spatial Coherence Function: Its Measurement by Means of a Phase-Modulated Shearing Interferometer,” Appl. Opt. 20, 1102 (1981). [CrossRef] [PubMed]
  24. M. Dugan, “Shearing Interferometer for the Measurement of Atmospheric MTF, M. Sc. Thesis, U. Rochester, New York (1982).
  25. C. J. Oliver, E. R. Pike, “Statistical Accuracy in the Photon Counting Structure Function of Fluctuating Light Fields,” Opt. Acta 28, 1345 (1981). [CrossRef]
  26. K. Schatzel, “Noise in Photon Correlation and Photon Structure Function,” Opt. Acta 30, 155 (1983). [CrossRef]
  27. A. A. Tokovinin, “The Influence of Turbulence on the Operation of a Stellar Interferometer,” Sov. Astron. Lett. 6, 386 (1980).
  28. C. W. Allen, Astrophysical Quantities (Clowes, London, 1972), p. 197.
  29. S. M. Kozel, “On the Fluctuation Resolution Limit of an Optical Modulation Interferometer,” Sov. Phys. JETP 5, 609 (1957).
  30. D. V. Korolkov, O. I. Krat, “On the Sensitivity of a Stellar Interferometer with Incoherent Accumulation of the Signal,” Sov. Astron. 20, 370 (1976).
  31. A. H. Greenaway, J. C. Dainty, “The Formal Equivalence Between Autocorrelation and Power Spectra Analysis of Photon-Limited Data,” Opt. Commun. 35, 307 (1980). [CrossRef]
  32. K. Itoh, Y. Ohtsuka, “Photon-Noise Limitations in Wave-Front-Folding Interferometry,” J. Opt. Soc. Am. 73, 479 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited