OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 24, Iss. 2 — Jan. 15, 1985
  • pp: 168–172

Rotation-variant optical data processing using the 2-D nonsymmetric Fourier transform

Tomasz Szoplik and Henri H. Arsenault  »View Author Affiliations

Applied Optics, Vol. 24, Issue 2, pp. 168-172 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we consider the properties of the nonsymmetrical Fourier transformation which is space-variant in both rectangular and polar coordinates. A coherent optical processor composed of two nonsymmetrical Fourier transformers is introduced. This processor allows rotation-variant linear filtering operations and matched filtering. Two configurations for such a processor are proposed. For certain parameters of both nonsymmetrical Fourier transformers it is possible to obtain a space-invariant processor with both lateral magnifications equal to unity. However, introducing any filter operation results in a rotation-variant performance.

© 1985 Optical Society of America

Original Manuscript: May 31, 1984
Published: January 15, 1985

Tomasz Szoplik and Henri H. Arsenault, "Rotation-variant optical data processing using the 2-D nonsymmetric Fourier transform," Appl. Opt. 24, 168-172 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Rhodes, “Space-Variant Optical Systems and Processing,” in Applications of Optical Fourier Transform,H. Stark, Ed. (Academic, New York, 1982), p. 333. [CrossRef]
  2. J. W. Goodman, “Linear Space-Variant Optical Data Processing,” in Optical Information Processing,S. H. Lee, Ed. (Springer, Berlin, 1981), p. 235. [CrossRef]
  3. J. F. Walkup, “Space-Variant Coherent Optical Processing,” Opt. Eng. 19, 339 (1980). [CrossRef]
  4. L. Farrenc, “An Apparatus and Method for the Production of Photographs and Stereoscopic Portraits and Pictures,” British Pat.1453 (1862).
  5. E. Abbe, P. Rudolph, “Anamorphotisches Linsensystem,” German Pat.99722 (1897).
  6. P. Culmann, “The Formation of Optical Image,” in Geometrical Investigation of the Formation of Images in Optical Instruments,M. von Rohr, Ed. (H. M. Stationery Office, London, 1920), p. 125.
  7. A. W. Lohmann, D. P. Paris, “Space-Variant Image Formation,” J. Opt. Soc. Am. 55, 1007 (1965).
  8. A. W. Lohmann, N. Streibl, “Map Transformation by Optical Anamorphic Processing,” Appl. Opt. 22, 780 (1983). [CrossRef] [PubMed]
  9. M. Montel, “Classification des Aberrations Geometriques des Systemes Optiques sans Symetrie de Revolution,” Rev. Opt. 32, 585 (1953).
  10. C. G. Wynne, “The Primary Aberrations of Anamorphotic Lens Systems,” Proc. Phys. Soc. London Sect B. 67, 529 (1954). [CrossRef]
  11. R. Barakat, A. Houston, “The Aberrations of Non-rotationally Symmetric Systems and Their Diffraction Effects,” Opt. Acta 13, 1 (1966). [CrossRef]
  12. H. H. Arsenault, “A Matrix Representation for Non-symmetrical Optical Systems,” J. Opt. Paris 11, 87 (1980). [CrossRef]
  13. B. Macukow, H. H. Arsenault, “Matrix Decompositions for Nonsymmetrical Optical Systems,” J. Opt. Soc. Am. 73, 1360 (1983). [CrossRef]
  14. L. J. Cutrona, E. N. Leith, C. J. Palermo, L. J. Porcello, “Optical Data Processing and Filtering Systems,” IRE Trans. Inf. Theory IT-6, 386 (1960). [CrossRef]
  15. T. Szoplik, W. Kosek, “Directional Analysis of Optical Fourier Spectra in an Anamorphic System,” in Abstracts, 1983 European Optical Conference, Rydzyna, Poland1983), p. 88.
  16. T. Szoplik, W. Kosek, C. Ferreira, “Nonsymmetric Fourier Transforming with an Anamorphic System,” Appl. Opt. 23, 905 (1984). [CrossRef] [PubMed]
  17. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 308.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited