OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 2 — Jan. 15, 1985
  • pp: 208–214

Optical writing mechanism of textured media

S. Y. Suh and Harold G. Craighead  »View Author Affiliations


Applied Optics, Vol. 24, Issue 2, pp. 208-214 (1985)
http://dx.doi.org/10.1364/AO.24.000208


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theoretical analysis of the writing mechanism of textured optical storage media revealed a fundamental sensitivity advantage due to the absence of an energy barrier other than melting the material. The melting limited optical writing has been experimentally achieved both in textured germanium samples and textured silicon samples. The analysis also predicted that an instability exists in the fluid motion of the textured column during spot formation, which grows exponentially on a subnanosecond time scale. This instability coupled with the excessive Laplace-Young surface pressure ensures the spot formation before the resolidifica-tion of the molten material. This writing process facilitates the optimization of a given medium and greatly simplifies the materials research.

© 1985 Optical Society of America

History
Original Manuscript: July 23, 1984
Published: January 15, 1985

Citation
S. Y. Suh and Harold G. Craighead, "Optical writing mechanism of textured media," Appl. Opt. 24, 208-214 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-2-208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Goldberg, “Large Memory Applications for Optical Disk,” in Technical Digest of Topical Meeting on Optical Data Storage (Optical Society of America, Washington, D.C., 1983), paper MA31. [CrossRef]
  2. J. B. Shaffer, J. W. Schelin, D. T. Thomas, “Data Base and File Management Approach for Large Optical Disk System,” Proc. Soc. Photo-Opt. Instrum. Eng. 421, 20 (1983).
  3. K. Bulthuis, M. G. Carasso, J. P. J. Heemskerk, P. J. Kivits, W. J. Kleuters, P. Zaim, “Ten Billion Bits on a Disk,” IEEE Spectrum (Aug.1978), p. 26.
  4. W-Y. Lee, R. H. Geiss, “Degradation of Thin Tellurium Films,” J. Appl. Phys. 54, 1351 (1983). [CrossRef]
  5. H. G. Craighead, R. E. Howard, “Microscopically Textured Optical Storage Media,” Appl. Phys. Lett. 39, 532 (1981). [CrossRef]
  6. H. G. Craighead, R. E. Howard, R. W. Smith, D. A. Snyder, “Textured Optical Storage Media,” Proc. Soc. Photo-Opt. Instrum. Eng. 329, 202 (1982).
  7. H. G. Craighead, R. E. Howard, J. E. Sweeney, D. M. Tennant, “Textured Surfaces: Optical Storage and Other Applications,” J. Vac. Sci. Technol. 20, 316 (1982). [CrossRef]
  8. H. G. Craighead, R. E. Howard, P. F. Liao, D. M. Tennant, J. E. Sweeney, “Textured Germanium Optical Storage Medium,” Appl. Phys. Lett. 40, 662 (1982). [CrossRef]
  9. S. Y. Suh, “Optical Writing Process in Textured Media,” Proc. Soc. Photo-Opt. Instrum. Eng. 382, 196 (1983).
  10. L. M. Schiavone, H. G. Craighead, R. E. Howard, J. L. Shay, “Studies of Fabrication Parameters of Textured Storage Media,” Proc. Soc. Photo-Opt. Instrum. Eng. 390, 144 (1983).
  11. M. O. Aboelfotoh, R. J. von Gutfeld, “Effects of Pulsed Laser Radiation on Thin Aluminum Films,” J. Appl. Phys. 43, 3789 (1972). [CrossRef]
  12. M. Feldman, J. M. Moran, R. L. Ruth, R. R. Goham, “Integrated Circuit Artwork Generation by Laser Machining,” Solid State Technol. 20, 52 (1977).
  13. D. Maydan, “Micromachining and Image Recording on Thin Films by Laser Beams,” Bell Syst. Tech. J. 50, 1761 (1971).
  14. R. Sard, D. Maydan, “A Structural Investigation of the Laser Machining of Thin Bismuth Films,” J. Appl. Phys. 42, 5084 (1971). [CrossRef]
  15. J. Corcoran, H. Ferrier, “Melting Holes in Metal Films for Real-Time High Density Digital Data Storage,” Proc. Soc. Photo-Opt. Instrum. Eng. 123, 17 (1977).
  16. M. Tenao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, “Chalcogenide Thin Films for Laser-Beam Recordings by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979). [CrossRef]
  17. R. C. Miller, R. H. Willens, H. A. Watson, L. A. D'Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).
  18. P. Kivits, R. De Bont, B. Jacobs, P. Zaim, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982). [CrossRef]
  19. J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982). [CrossRef]
  20. S. Y. Suh, D. A. Snyder, D. L. Anderson, “Writing Process in Ablative Optical Recording,” Appl. Opt. in press.
  21. C. Isenberg, The Science of Soap Films and Soap Bubbles (Wood Spring Press, Somerset, England, 1978).
  22. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-Induced Local Heating of Multilayers,” Appl. Opt. 21, 1106 (1982). [CrossRef] [PubMed]
  23. M. Mansuripur, G. A. N. Connell, “Laser-Induced Local Heating of Moving Multilayer Media,” Appl. Opt. 22, 666 (1983). [CrossRef] [PubMed]
  24. S. Y. Suh, D. L. Anderson, “Latent Heat Effects of Pulsed Laser Beam Induced Temperature Profiles in Optical Recording Thin Films,”Appl. Opt. 23, 3965 (1984). [CrossRef] [PubMed]
  25. U. C. Paek, A. Kestenbaum, “Thermal Analysis of Thin-Film Micromachining with Lasers,” J. Appl. Phys. 44, 2260 (1973). [CrossRef]
  26. G. A. Niklasson, H. G. Craighead, “Threshold Laser Powers of Textured Optical Storage Media,” Opt. Eng. 23, 443 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited