OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 2 — Jan. 15, 1985
  • pp: 254–260

Relative calibration of grazing incidence spectrometers from charge-exchange excitation of hydrogenic ions

R. C. Isler and R. A. Langley  »View Author Affiliations


Applied Optics, Vol. 24, Issue 2, pp. 254-260 (1985)
http://dx.doi.org/10.1364/AO.24.000254


View Full Text Article

Enhanced HTML    Acrobat PDF (932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Charge transfer from hydrogen atoms having energies below 35 keV to fully ionized low-Z impurities takes place predominantly in two excited levels. It is shown that the subsequent radiative cascades from C5+, N6+; and O7+ can be used to obtain the relative response of grazing incidence spectrometer systems in the region between 102 and 1164 Å. In principle, the technique can be extended to 19 Å. The method is useful in plasma devices employing neutral beams for heating or for diagnostic probing. The absolute sensitivity of a system is then established by normalizing to only one branching ratio measurement from a pair of lines having accurately known transition probabilities. Results from the Impurity Studies Experiment-B (ISX-B) tokamak are presented.

© 1985 Optical Society of America

History
Original Manuscript: July 18, 1984
Published: January 15, 1985

Citation
R. C. Isler and R. A. Langley, "Relative calibration of grazing incidence spectrometers from charge-exchange excitation of hydrogenic ions," Appl. Opt. 24, 254-260 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-2-254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. R. Canfield, R. G. Johnstone, R. P. Madden, “NBS Detector Standard for the Far UV,” Appl. Opt. 12, 1611 (1973). [CrossRef] [PubMed]
  2. E. Hinnov, “Highly Ionized Atoms in Tokamak Discharges,” Phys. Rev. 14, 1533 (1976). [CrossRef]
  3. M. Shiho, S. Konoshima, A. Funahashi, S. Kasai, T. Sugie, N. Suzuki, M. Shimada, N. Fujisawa, “Spectroscopic Study of Impurities in the JFT-2 Tokamak,” Nucl. Fusion 18, 1705 (1978). [CrossRef]
  4. V. V. Afrosimov, Yu. S. Gordeev, A. N. Zimovev, A. A. Korotov, Fiz. Plazmy 5, 981 (1979)[“Light-Impurity Diagnostics in the T-4 Tokamak,” Sov. J. Plasma Phys. 5, 551 (1979)].
  5. A. N. Zimovev, A. A. Korotko, E. R. Krzhizhnovskii, V. V. Aforsimov, Yu. S. Gordeev, Pis'ma Zh. Eksp. Teor. Fiz. 32, 557 (1980)[“Radial Distribution of the Concentration of Oxygen Nuclei in the Plasma of the T-10 Tokamak,” JETP Lett. 32, 539 (1980)].
  6. R. C. Isler, L. E. Murray, S. Kasai, J. L. Dunlap, S. C. Bates, P. H. Edmonds, E. A. Lazarus, C. H. Ma, M. Murakami, “Charge-Exchange Excitation and Recombination of Oxygen in the ISX-B Tokamak,” Phys. Rev. A 24, 2701 (1981). [CrossRef]
  7. R. J. Fonck, M. Finkenthal, R. J. Goldston, D. L. Herndon, R. A. Hulse, R. Kaita, D. D. Meyerhofer, “Spatially Resolved Measurements of Fully Ionized Low-Z Impurities in the PDX Tokamak,” Phys. Rev. Lett. 49, 737 (1982). [CrossRef]
  8. R. C. Isler, L. E. Murray, “Plasma Rotation Measurements using Spectral Lines from Charge Transfer Reactions,” Appl. Phys. Lett 42, 355 (1983). [CrossRef]
  9. H. A. Bethe, E. E. Saltpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).
  10. W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS 4 (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.
  11. T. A. Green, E. J. Shipsey, J. C. Browne, “Modified Method of Perturbed Stationary States. IV. Electron Capture Cross Sections for the Reaction C6+ + H(1S) → C5+(n,l) + H+,” Phys. Rev. A 25, 1364 (1982). [CrossRef]
  12. E. J. Shipsey, T. A. Green, J. C. Browne, “Modified Method of Perturbed Stationary States. V. Electron Capture Cross Sections for the Reaction O8+ + H(1S) → O7+(n,l) + H+,” Phys. Rev. A 27, 821 (1983). [CrossRef]
  13. A Salop, “The Distribution of Excitation Resulting from Electron Capture in Stripped-Ion-Hydrogen-Atom Collisions,” J. Phys. B 12, 919 (1979). [CrossRef]
  14. R. E. Olson, “n,l Distributions in A8+ + H Electron-Capture Collisions,” Phys. Rev. A 24, 1726 (1981). [CrossRef]
  15. V. A. Abramov, F. F. Baryshnikov, V. S. Lisitsa, Zh. Eksper. Teor. Fiz. 27, 494 (1978)[“Change of Intensity of Spectral Lines of Multiply Charged Ions as a Result of Charge Exchange with Atom Hydrogen,” Sov. Phys. JETP 27, 464 (1978)] and private communication.
  16. R. J. Fonck, D. S. Darrow, K. P. Jaehnig, “Determination of Plasma-Ion Velocity Distribution via Charge-Exchange Recombination Spectroscopy,” Phys. Rev. A 29, 3288 (1984). [CrossRef]
  17. K. Omidvar, “Transition Probabilities, Life Times, and Branching Ratios in Hydrogen-like Atoms in the Linear Stark Effect,” At. Data Nucl. Tables 28, 215 (1983). [CrossRef]
  18. G. A. Hallock et al., “Plasma Space Potential Measurements on ISX-B,” in Proceedings, IEEE Conference on Plasma Science (IEEE, New York, 1984).
  19. R. C. Isler, Nucl. Instrum. Methods (1985), to be published.
  20. R. C. Isler, “Profiles and Polarizations of the Balmer-α Line from High Temperature Hydrogen Atoms in Strong Magnetic Fields,” Phys. Rev. A 14, 1015 (1976). [CrossRef]
  21. D. H. Sampson, “On Statistical Equilibrium Among the Sublevels of Hydrogenic Atoms and Ions,” J. Phys. B 10, 749 (1977). [CrossRef]
  22. R. E. Olson, Department of Physics, University of Missouri; private communication.
  23. J. E. Mack, F. Paresce, S. Bowyer, “Channel Electron Multiplier: Its Quantum Efficiency at Soft X-Ray and Vacuum Ultraviolet Wavelengths,” Appl. Opt. 15, 861 (1976). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited