OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 23 — Dec. 1, 1985
  • pp: 4000–4012

Algorithms for limited-view computed tomography: an annotated bibliography and a challenge

Rangaraj Rangayyan, Atam Prakash Dhawan, and Richard Gordon  »View Author Affiliations


Applied Optics, Vol. 24, Issue 23, pp. 4000-4012 (1985)
http://dx.doi.org/10.1364/AO.24.004000


View Full Text Article

Acrobat PDF (1975 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In many applications of computed tomography, it may not be possible to acquire projection data at all angles, as required by the most commonly used algorithm of convolution backprojection. In such a limited-data situation, we face an ill-posed problem in attempting to reconstruct an image from an incomplete set of projections. Many techniques have been proposed to tackle this situation, employing diverse theories such as signal recovery, image restoration, constrained deconvolution, and constrained optimization, as well as novel schemes such as iterative object-dependent algorithms incorporating a priori knowledge and use of multispectral radiation. We present an overview of such techniques and offer a challenge to all readers to reconstruct images from a set of limited-view data provided here.

© 1985 Optical Society of America

History
Original Manuscript: October 16, 1984
Published: December 1, 1985

Citation
Rangaraj Rangayyan, Atam Prakash Dhawan, and Richard Gordon, "Algorithms for limited-view computed tomography: an annotated bibliography and a challenge," Appl. Opt. 24, 4000-4012 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-23-4000


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Rosenfeld, A. C. Kak, “Reconstruction,” in Digital Picture Processing (Academic, New York, 1982), Chap. 8, pp. 353–430.
  2. L. A. Shepp, J. B. Kruskal, “Computerized Tomography: The New Medical X-ray Technology,” Am. Math. Mon. 85, 420 (1978). [CrossRef]
  3. R. M. Mersereau, A. V. Oppenheim, “Digital Reconstruction of Multidimensional Signals from Their Projections,” Proc. IEEE 62, 1319 (1974). [CrossRef]
  4. R. A. Brooks, G. di Chiro, “Principles of Computer Assisted Tomography (CAT) in Radiographic and Radioisotopic Imaging,” Phys. Med. Biol. 21, 689 (1976). [CrossRef] [PubMed]
  5. R. Gordon, G. T. Herman, “Three-Dimensional Reconstruction from Projections: A Review of Algorithms,” Int. Rev. Cytol. 38, 111 (1974). [CrossRef] [PubMed]
  6. G. T. Herman, Ed., Image Reconstruction From Projections: Implementation and Applications (Springer-Verlag, Berlin, 1979).
  7. G. T. Herman, Image Reconstruction From Projections: The Fundamentals Of Computed Tomography (Academic, New York, 1980).
  8. R. A. Robb, “X-ray Computed Tomography: An Engineering Synthesis of Multiscientific Principles,” CRC Crit. Rev. Biomed. Eng. 7, 264 (Mar.1982).
  9. H. H. Barrett, W. Swindel, Radiological Imaging, Vols. 1 and 2 (Academic, New York, 1982).
  10. J. Raviv, J. F. Greenleaf, G. T. Herman, Eds., Computer Aided Tomography and Ultrasonics in Medicine (North-Holland, Amsterdam, 1979).
  11. A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  12. A. C. Kak, “Computerized Tomography with X-ray, Emission, and Ultrasound Sources,” Proc. IEEE 67, 1245 (1979). [CrossRef]
  13. H. J. Scudder, “Introduction to Computer Aided Tomography,” Proc. IEEE 66, 628 (1978). [CrossRef]
  14. A. Macovski, “Physical Problems of Computerized Tomography,” Proc. IEEE 71, 373 (1983). [CrossRef]
  15. A. K. Louis, F. Natterer, “Mathematical Problems of Computerized Tomography,” Proc. IEEE 71, 379 (1983). [CrossRef]
  16. R. Gordon, G. T. Herman, S. A. Johnson, “Image Reconstruction from Projections,” Sci. Am. 233, 56 (Oct.1975). [CrossRef] [PubMed]
  17. Z. H. Cho, “General Views on 3-D Image Reconstruction and Computerized Transverse Axial Tomography,” IEEE Trans. Nucl. Sci. 21, 44 (1974).
  18. M. Onoe, J. W. Tsao, H. Yamada, H. Nakamura, J. Kogure, H. Kawamura, M. Yoshimatsu, “Computed Tomography for Measuring Annual Rings of a Live Tree,” Proc. IEEE 71, 907 (1983). [CrossRef]
  19. J. G. Sanderson, “Reconstruction of Fuel Pin Bundles by a Maximum Entropy Method,” IEEE Trans. Nucl. Sci. NS-26, 2685 (1979). [CrossRef]
  20. W. Munk, C. Wunsch, “Ocean Acoustic Tomography—A Scheme for Large Scale Monitoring,” Deep Sea Res. 26A, 123 (1979).
  21. B. Cornuelle, “Acoustic Tomography,” IEEE Trans. Geosci. Remote Sensing GRS-20, 326 (1982). [CrossRef]
  22. K. A. Dines, R. J. Lytle, “Computerized Geophysical Tomography,” Proc. IEEE, 67, 1065 (1979). [CrossRef]
  23. D. A. Terry, J. N. Albright, “Numerical Simulations in Limited-Aperture Tomography with Application to Crosswell Acoustics,” in Technical Digest, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging (Optical Society of America, Washington, D.C., 1984), paper TuA2.
  24. J. N. Albright, D. A. Terry, “Crosswell Acoustic Imaging Project June 1984 Review,” LA-UR-84-1928, Los Alamos Scientific Laboratory (1984).
  25. S. Persson, E. Ostman, “Use of Computed Tomography in Non-destructive Testing of Polymeric Materials,” in Technical Digest, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging (Optical Society of America, Washington, D.C., 1984), paper MB5.
  26. W. A. Ellingson, M. Vannier, “Application of Tomographic Imaging to Structural Ceramics: Green-state Monolithics and Ceramic-Ceramic Composites,” in Technical Digest, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging (Optical Society of America, Washington, D.C., 1984), paper MB6.
  27. R. Gordon, H. V. B. Hirsch, “Vision Begins with Reconstructions of the Retinal Image: How the Brain Sees and Stores Pictures,” in Im Gegenstrom-Fuer Helmut Hirsch zum Siebzigsten (Peter Hammer Verlag, Wuppertal, 1976), pp. 201–214.
  28. R. M. Rangayyan, R. Gordon, “Streak Preventive Image Reconstruction with ART and Adaptive Filtering,” IEEE Trans. Med. Imaging MI-1, 173 (1982). [CrossRef]
  29. R. Gordon, R. M. Rangayyan, “Geometric Deconvolution: A Meta-algorithm for Limited View Computed Tomography,” IEEE Trans. Biomed. Eng. BME-30, 806 (1983). [CrossRef]
  30. R. Gordon, “Artifacts in Reconstructions made from a Few Projections,” in Proceedings, First International Joint Conference on Pattern Recognition (IEEE Computer Society, Washington, D.C., 1973), pp. 275–285.
  31. C. R. Crawford, A. C. Kak, “Aliasing Artifacts in Computerized Tomography,” Appl. Opt. 18, 3704 (1979). [CrossRef] [PubMed]
  32. K. T. Smith, D. C. Solmon, S. L. Wagner, “Practical and Mathematical Aspects of the Problem of Reconstructing Objects from Radiographs,” Bull. Am. Math. Soc. 83, 1227 (1977). [CrossRef]
  33. A. J. Duerinckx, A. Macovski, “Information and Artifact in Computed Tomography Image Statistics,” Med. Phys. 7, 127 (1980). [CrossRef] [PubMed]
  34. D. L. Snyder, J. R. Cox, “An Overview of Reconstructive Tomography and Limitations Imposed by a Finite Number of Projections,” in Reconstructive Tomography in Diagnostic Radiology and Nuclear Medicine, M. M. Ter-Pogossian et al., Eds. (University Park Press, Baltimore, 1977), pp. 3–32.
  35. B. F. Logan, “The Uncertainty Principle in Reconstructing Functions from Projections,” Duke Math. J. 42, 661 (1975). [CrossRef]
  36. R. H. Huesman, “The Effects of a Finite Number of Projection Angles and Finite Lateral Sampling of Projections on the Propagation of Statistical Errors in Transverse Section Reconstruction,” Phys. Med. Biol. 22, 511 (1977). [CrossRef] [PubMed]
  37. A. K. Louis, “Ghosts in Tomography—The Null Space of the Radon Transform,” Math. Methods Appl. Sci. 3, 1 (1981). [CrossRef]
  38. C. Hamaker, D. C. Solmon, “The Angles Between the Null Spaces of X-Rays,” J. Math. Anal. Appl. 62, 1 (1978). [CrossRef]
  39. R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of Information Theory to the Assessment of Computed Tomography,” Med. Phys. 6, 83 (1979). [CrossRef] [PubMed]
  40. M. H. Reid, “Quantitative Stereology and Radiologic Image Analysis. Part I: Computerized Tomography and Ultra sound,” Med. Phys. 9, 346 (1982). [CrossRef] [PubMed]
  41. M. Ein-Gal, D. Rosenfeld, A. Macovski, “The Consistency of the Shadow: An Approach to Preprocessing in Computerized Tomography,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper WB5.
  42. C. D. Stockham, “A Simulation Study of Aliasing in Computed Tomography,” Radiology 132, 721 (1979). [PubMed]
  43. R. A. Brooks, G. DiChiro, “Statistical Limitations in X-Ray Reconstructive Tomography,” Med. Phys. 3, 237 (1976). [CrossRef] [PubMed]
  44. G. H. Glover, N. J. Pelc, “Nonlinear Partial Volume Artifacts in X-Ray Computed Tomography,” Med. Phys. 7, 238 (1980). [CrossRef] [PubMed]
  45. P. S. Tofts, J. C. Gore, “Some Sources of Artifact in Computed Tomography,” Phys. Med. Biol. 25, 117 (1980). [CrossRef] [PubMed]
  46. R. L. Morin, D. E. Raeside, “A Pattern Recognition Method for the Removal of Streaking Artifact in Computed Tomography,” Radiology 141, 229 (1981). [PubMed]
  47. L. A. Shepp, J. A. Stein, “Simulated Reconstruction Artifacts in Computerized X-Ray Tomography,” in Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M. M. Ter-Pogossian et al., Ed. (University Park Press, Baltimore, 1977), pp. 33–48.
  48. A. Louis, “Nonuniqueness Problems in Computerized Tomography,” ZAMM- Angew. Anal. Math. Phys. 62, T290 (1982).
  49. A. Duerinckx, A. Macovski, “Information and Artifact in Second-Order Statistics from Computed Tomography (CT) Images,” Proc. Soc. Photo-Opt. Instrum. Eng. 173, 250 (1979).
  50. R. A. Brooks, G. H. Glover, A. J. Talbert, R. L. Eisner, F. A. DiBianca, “Aliasing: A Source of Streaks in Computed Tomograms,” J. Comput. Assist. Tomogr. 3, 511 (1979). [CrossRef] [PubMed]
  51. M. E. Davison, “The Ill-Conditioned Nature of the Limited Angle Tomography Problem,” SIAM J. Appl. Math. Anal. 428 (1983–1984).
  52. M. B. Katz, Questions of Uniqueness and Resolution in Reconstruction from Projections, in series Lecture Notes in Bio-mathematics, S. Levin, Ed. (Springer-Verlag, Berlin, 1979).
  53. O. J. Tretiak, “Noise Limitations in X-Ray Computed Tomography,” J. Comput. Assist. Tomogr. 2, 477 (1978). [CrossRef] [PubMed]
  54. R. W. Gerchberg, “Super-resolution Through Error Energy Reduction,” Opt. Acta 21, 709 (1974). [CrossRef]
  55. A. Papoulis, “A New Algorithm in Spectral Analysis and Band-limited Extrapolation,” IEEE Trans. Circuits Syst. CS-22, 735 (1975). [CrossRef]
  56. K. C. Tam, V. Perez-Mendez, B. Macdonald, “Limited Angle 3-D Reconstruction from Continuous and Pinhole Projections,” IEEE Trans. Nucl. Sci. NS-27, 445 (1980). [CrossRef]
  57. K. C. Tam, V. Perez-Mendez, B. Macdonald, “3-D Object Reconstruction in Emission and Transmission Tomography with Limited Angular Input,” IEEE Trans. Nucl. Sci. NS-26, 2797 (1979). [CrossRef]
  58. K. C. Tam, V. Perez-Mendez, “Tomographical Imaging with Limited-Angle Input,” J. Opt. Soc. Am. 71, 582 (1981). [CrossRef]
  59. K. C. Tam, V. Perez-Mendez, “Limits to Image Reconstruction from Restricted Angular Input,” IEEE Trans. Nucl. Sci. NS-28, 179 (1981). [CrossRef]
  60. T. Sato, S. J. Norton, M. Linzer, O. Ikeda, M. Hirama, “Tomographic Image Reconstruction from Limited Projections Using Iterative Revisions in Image and Transform Spaces,” Appl. Opt. 20, 395 (1981). [CrossRef] [PubMed]
  61. N. Baba, K. Murata, “Image Reconstruction from Limited-Angle Projections,” Optik 60, 327 (1982).
  62. K. C. Tam, V. Perez-Mendez, “Limited Angle Three Dimensional Reconstructions Using Fourier Transform Iterations and Radon Transform Iterations,” Opt. Eng. 20, 586 (1981). [CrossRef]
  63. K. C. Tam, “The Use of Multispectral Imaging in Limited-Angle Reconstruction,” IEEE Trans. Nucl. Sci. NS-29, 512 (1982). [CrossRef]
  64. K. C. Tam, “Multispectral Limited-Angle Image Reconstruction,” IEEE Trans. Nucl. Sci. NS-30, 697 (1983). [CrossRef]
  65. W. H. Rowan, D. P. Boyd, J. L. Couch, D. Ortendahl, “Algorithms for Limited-Angle Computed Tomography,” Proc. Soc. Photo. Opt. Instrum. Eng. 372, 169 (1982).
  66. S. K. Kenue, J. F. Greenleaf, “Limited Angle Multifrequency Diffraction Tomography,” IEEE Trans. Sonics Ultrason. SU-29, 213 (1982). [CrossRef]
  67. T. Sato, K. Saski, Y. Nakamura, M. Linzer, S. J. Norton, “Tomographic Image Reconstruction from Limited Projections Using Coherent Optical Feedback,” Appl. Opt. 20, 3073 (1981). [CrossRef] [PubMed]
  68. T. Inouye, “Image Reconstruction with Limited Angle Projection Data,” IEEE Trans. Nucl. Sci. NS-26, 2666 (1979).
  69. L. Garnero, J. Brunol, “Tomographic Imaging with Limited View Angle Using an Expansion on a Set of Eigenfunctions Adapted to Space-Limited Objects,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA4.
  70. P. R. Smith, T. M. Peters, R. M. Lewitt, R. H. T. Bates, “Aspects of Image Reconstruction by Fourier Methods,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper TLA4.
  71. N. H. Farhat, “Inverse Scattering Reconstructions from Incomplete Fourier Space Data,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA9.
  72. C. K. Rushforth, R. L. Frost, “Comparison of Some Algorithms for Reconstructing Space-Limited Images,” J. Opt. Soc. Am. 70, 1539 (1980). [CrossRef]
  73. S. Renjen, T. S. Huang, “Experimental Results on the Missing Cone Problem in Computer Aided Tomography,” in Proceedings, Fifth Annual Symposium on Computer Applications in Medical Care, H. G. Heffernan, Ed. (IEEE Computer Society, Washington, D.C., 1981), pp. 566–570.
  74. A. Klug, R. A. Crowther, “Three-Dimensional Image Reconstruction from the Viewpoint of Information Theory,” Nature (London) 238, 435 (25Aug.1972). [CrossRef]
  75. L. A. Shepp, B. F. Logan, “The Fourier Reconstruction of a Head Section,” IEEE Trans. Nucl. Sci. NS-21, 21 (1974).
  76. P. R. Smith, T. M. Peters, R. H. T. Bates, “Image Reconstruction from Finite Numbers of Projections,” J. Phys. A 6, 361 (1973). [CrossRef]
  77. F. A. Grunbaum, “A Study of Fourier Space Methods for Limited Angle Image Reconstruction,” Numer. Function Anal. Optimiz. 2, 31 (1980). [CrossRef]
  78. M. Y. Chiu, H. H. Barrett, R. G. Simpson, C. Chou, J. W. Arendt, G. R. Gindi, “Three-Dimensional Radiographic Imaging with a Restricted View Angle,” J. Opt. Soc. Am. 69, 1323 (1979). [CrossRef]
  79. A. Lent, H. Tuy, “An Iterative Method for Extrapolation of Band-limited Functions,” J. Math. Anal. Appl. 83, 554 (1981). [CrossRef]
  80. H. Stark, J. W. Woods, I. Paul, R. Hingorani, “Direct Fourier Reconstruction in Computer Tomography,” IEEE Trans. Acoust. Speech Signal Process. ASSP-29, 237 (1981). [CrossRef]
  81. H. Tuy, “Reconstruction of.a Three-Dimensional Object from a Limited Range of Views,” J. Math. Anal. Appl. 80, 598 (1981). [CrossRef]
  82. J. R. Fienup, “Iterative Method Applied to Image Reconstruction and to Computer Generated Holograms,” Opt. Eng. 19, 297 (May/June1980). [CrossRef]
  83. H. Ogawa, “Image Reconstruction from Incomplete Projections,” in Proceedings, First International Symposium on Medical Imaging Image Interpretation ISMII ’82 (IEEE, Berlin, 1982), pp. 534–539.
  84. Y. Koyanagi, I. Saito, Y. Hoshiko, “Image Reconstruction from Band-limited Data by Spectrum Extrapolation,” Trans. IECE Jpn. E65, 561 (1982).
  85. T. Inouye, “Image Reconstruction with Limited View Angle Projections,” Proc. Soc. Photo-Opt. Instrum. Eng. 372, 165 (1982).
  86. M. Nassi, W. R. Brody, B. P. Medoff, A. Macovski, “Iterative Reconstruction-Reprojection: An Algorithm for Limited Data Cardiac Computed Tomography,” IEEE Trans. Biomed. Eng. BME-29, 333 (1982). [CrossRef]
  87. B. P. Medoff, W. R. Brody, M. Nassi, A. Macovski, “Iterative Convolution Backprojection Algorithms for Image Reconstruction from Limited Data,” J. Opt. Soc. Am. 73, 1493 (1983). [CrossRef]
  88. P. B. Heffernan, R. A. Robb, “Towards Improved Reconstruction of the Heart from Small Numbers of Projections,” in Computers in Cardiology (IEEE Computer Society, Silver Spring, Md.) 1982, pp. 149–152.
  89. G. A. Johnson, J. D. Godwin, E. K. Fram, “Gated Multiplanar Cardiac Computed Tomography,” Radiology 145, 195 (1982). [PubMed]
  90. R. W. Redington, W. H. Berninger, M. J. Lipton, B. Brundage, E. Carlsson, P. Doherty, “Cardiac Computed Tomography,” Proc. Soc. Photo-Opt. Instrum. Eng. 206, 67 (1979).
  91. G. C. McKinnon, R. H. T. Bates, “Towards Imaging the Beating Heart Usefully with a Conventional CT Scanner,” IEEE Trans. Biomed. Eng. BME-28, 123 (1981). [CrossRef]
  92. G. S. Harell, D. F. Guthaner, R. S. Brieman, C. C. Morehouse, E. J. Seppi, W. H. Marshall, L. Wexler, “Stop Action Cardiac Computed Tomography,” Radiology 123, 515 (May1977). [PubMed]
  93. Y. Tateno, T. Fujii, G. Uchiyama, Y. Masuda, “Methods for Cutting Time of ECG-Synchronized CT using Special X-ray Generator,” IEEE Trans. Nucl. Sci. NS-26, 2845 (1979). [CrossRef]
  94. R. Gordon, “A Tutorial on ART (Algebraic Reconstruction Techniques),” IEEE Trans. Nucl. Sci. NS-21, 78 (1974).
  95. P. Gilbert, “Iterative Methods for the Three-Dimensional Reconstruction of an Object from Projections,” J. Theoret. Biol. 36, 105 (1972). [CrossRef]
  96. B. P. Medoff, W. R. Brody, A. Macovski, “Image Reconstruction from Limited Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 372, 188 (1982).
  97. P. B. Heffernan, R. A. Robb, “Image Reconstruction from Incomplete Projection Data: Iterative Reconstruction-Reprojection Techniques,” IEEE Trans. Biomed. Eng. BME-30, 838 (1983). [CrossRef]
  98. M. Nassi, W. R. Brody, P. Cipriano, P. Stonestrom, C. More-house, D. Moss, A. Macovski, “Application of a Reflection Technique for Improved Temporal Resolution with Dynamic ECG-Gated Computed Tomography,” Proc. Soc. Photo-Opt. Instrum. Eng. 206, 103 (1979).
  99. M. Nassi, W. R. Brody, P. R. Cipriano, A. Macovski, “A Method for Stop-Action Imaging of the Heart Using Gated Computed Tomography,” IEEE Trans. Biomed. Eng. BME-28, 116 (1981). [CrossRef]
  100. G. H. Weiss, A. J. Talbert, R. A. Brooks, “The Use of Phantom Views to Reduce CT Streaks due to Insufficient Angular Sampling,” Phys. Med. Biol. 27, 1151 (1982). [CrossRef] [PubMed]
  101. R. M. Lewitt, R. H. T. Bates, “Image Reconstruction from Projections: Part III. Projection Completion Methods (Theory),” Optik 50, 189 (1978).
  102. R. M. Lewitt, R. H. T. Bates, “Image Reconstruction from Projections: Part I,” Optik 50, 19 (1978).
  103. R. M. Lewitt, R. H. T. Bates, “Image Reconstruction from Projections: Part II,” Optik 50, 85 (1978).
  104. R. M. Lewitt, R. H. T. Bates, “Image Reconstruction from Projections: Part IV. Projection Completion Methods (Computational Examples),” Optik 50, 269 (1978).
  105. A. K. Louis, “Picture Reconstruction from Projections in Restricted Range,” Math. Methods Appl. Sci. 2, 209 (1980). [CrossRef]
  106. R. A. Brooks, G. H. Weiss, A. J. Talbert, “A New Approach to Interpolation in Computed Tomography,” J. Comput. Assisted Tomogr. 2, 577 (1978). [CrossRef]
  107. M. Defrise, C. de Mol, “A Regularized Iterative Algorithm for Limited-Angle Inverse Radon Transform,” Opt. Acta 30, 403 (1983). [CrossRef]
  108. G. N. Ramachandran, A. V. Lakshminarayanan, “Three-Dimensional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions Instead of Fourier Transforms,” Proc. Natl. Acad. Sci. USA 68, 2236 (1971). [CrossRef] [PubMed]
  109. O. J. Tretiak, “The Point-Spread Function for the Convolutional Algorithm, Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper ThA5.
  110. B. E. Oppenheim, “Reconstruction Tomography from Incomplete Projections,” in Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M. M. Ter-Pogossian et al., Eds. (University Park Press, Baltimore, 1977), pp. 155–183.
  111. P. J. Soble, R. M. Rangayyan, R. Gordon, “Quantitative and Qualitative Evaluation of Geometric Deconvolution of Artifacts in Limited-View Computed Tomography,” IEEE Trans. Biomed. Eng. BME-32, 330 (1985). [CrossRef]
  112. R. M. Rangayyan, R. Gordon, “Geometric Deconvolution of Artifacts in Limited View Computed Tomography,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA2.
  113. Y. Biraud, “A New Approach to Increasing the Resolving Power by Data Processing,” Astron. Astrophys. 1, 124 (1969).
  114. R. P. Boas, M. Kac, “Inequalities for Fourier Transforms of Positive Functions,” Duke Math. J. 12, 189 (1945). [CrossRef]
  115. R. M. Rangayyan, R. Gordon, “Computed Tomography from Ordinary Radiographs for Teleradiology,” Med. Phys. 10, 687 (1983). [CrossRef] [PubMed]
  116. A. P. Dhawan, R. Gordon, R. M. Rangayyan, “Nevoscopy: Three-dimensional Computed Tomography of Nevi and Melanomas in situ by Transillumination,” IEEE Trans. Med. Imaging MI-3, 54 (1984). [CrossRef]
  117. A. P. Dhawan, R. Gordon, R. M. Rangayyan, “Computed Tomography by Translumination to Detect Early Melanoma,” in Proceedings, Frontiers of Engineering and Computing in Health Care (IEEE, Los Angeles, 1984), pp. 518–522.
  118. R. C. Gonzalez, P. Wintz, Digital Image Processing (Addison-Wesley, New York, 1979).
  119. A. P. Dhawan, R. M. Rangayyan, R. Gordon, “Wiener Filtering for Deconvolution of Geometric Artifacts in Limited-View Computed Tomography,” in Proceedings, Medical Images and Icons Conference (IEEE Computer Society, Arlington, 1984), pp. 168–172.
  120. A. P. Dhawan, R. M. Rangayyan, R. Gordon, “Image Restoration by Two-Dimensional Deconvolution in Limited-View Reconstruction,” in Technical Digest, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging (Optical Society of American, Washington, D.C., 1984), paper TuA5.
  121. A. P. Dhawan, R. M. Rangayyan, R. Gordon, “Image Restoration by Wiener Deconvolution in Limited-View Computed Tomography,” Appl. Opt. 24, this issue (Dec.1985). [CrossRef] [PubMed]
  122. A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977).
  123. R. Bamler, “Comments on Geometric Deconvolution: A Meta-Algorithm for Limited-View Computed Tomography,” IEEE Trans Biomed. Eng. BME-32, 241 (1985). [CrossRef]
  124. R. Gordon, A. P. Dhawan, R. M. Rangayyan, “Reply to ‘Comments on Geometric Deconvolution: A Meta-Algorithm for Limited-View Computed Tomography’” IEEE Trans. Biomed. Eng. BME-32, 242 (1985). [CrossRef]
  125. J. Llacer, “Theory of Imaging with a Very Limited Number of Projections,” IEEE Trans. Nucl. Sci. NS-26, 596 (1979). [CrossRef]
  126. L. M. Cheng, A. S. Ho, R. E. Burge, “Use of a priori Knowledge in Image Reconstruction,” J. Opt. Soc. Am. A 1, 386 (1984). [CrossRef]
  127. D. Townsend, B. Schorr, A. Jeavons, “Three-Dimensional Image Reconstruction for a Positron Camera with Limited Angular Acceptance,” IEEE Trans. Nucl. Sci. NS-27, 463 (1980). [CrossRef]
  128. R. W. Schafer, R. M. Mersereau, M. A. Richards, “Constrained Iterative Restoration Algorithms,” Proc. IEEE 69, 432 (1981). [CrossRef]
  129. U. J. Schwarz, “Mathematical-Statistical Description of the Iterative Beam Removing Technique (Method CLEAN),” Astron. Astrophys. 65, 345 (1978).
  130. R. Prost, R. Goutte, “Deconvolution when the Convolution Kernel has no Inverse,” IEEE Trans. Acoust. Speech Signal Process. ASSP-25, 542 (1977). [CrossRef]
  131. G. Muehllehner, R. A. Wetzel, “Section Imaging by Computer Calculation,” J. Nucl. Med. 12, 76 (1971). [PubMed]
  132. A. Minami, T. Furukawa, “Three Dimensional Image Reconstruction from the Projections under Limited View Angle,” Trans. IECE Jpn. E62, 576 (1979).
  133. H. Stark, I. M. Sezan, “Image Restoration by the Method of Projections onto Convex Sets,” in Technical Digest, Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper WA8.
  134. D. C. Youla, “Generalized Image Restoration by the Method of Alternating Orthogonal Projections,” IEEE Trans. Circuits Syst. CAS-25, 694 (1978). [CrossRef]
  135. B. R. Frieden, “Image Enhancement and Restoration,” in Topics in Applied Physics, Vol. 6: Picture Processing and Digital Filters, T. S. Huang, Ed. (Springer-Verlag, New York, 1975).
  136. R. J. Marks, M. J. Smith, “Closed-Form Object Restoration from Limited Spatial and Spectral Information,” Opt. Lett. 6, 522 (1981). [CrossRef]
  137. H. Stark, D. Cahana, H. Webb, “Restoration of Arbitrary Finite-Energy Optical Objects from Limited Spatial and Spectral Information,” J. Opt. Soc. Am. 71, 635 (1981). [CrossRef]
  138. M. I. Sezan, H. Stark, “Tomographic Image Reconstruction from Incomplete View Data by Convex Projections and Direct Fourier Inversion,” IEEE Trans. Med. Imaging MI-3, 91 (1984). [CrossRef]
  139. D. C. Youla, H. Webb, “Image Restoration by the Method of Convex Projections: Part 1—Theory,” IEEE Trans. Med. Imaging MI-1, 81 (1982). [CrossRef]
  140. M. I. Sezan, H. Stark, “Image Restoration by the Method of Convex Projections: Part 2—Applications and Numerical Results,” IEEE Trans. Med. Imaging MI-1, 95 (1982). [CrossRef]
  141. R. Gordon, R. M. Rangayyan (M. R. Rangaraj), “Experiments on Streak Prevention in Image Reconstruction from a Few Views,” in Proceedings, Fourth Biennial Conference Canadian Society for Computational Studies of Intelligence (Saskatoon, May1982), pp. 41–47.
  142. G. Minerbo, “MENT: A Maximum Entropy Algorithm for Reconstructing a Source from Projection Data,” Comput. Graphics Image Process. 10, 48 (1979). [CrossRef]
  143. R. Nityananda, R. Narayan, “Maximum Entropy Image Reconstruction—A Practical Noninformation-Theoretic Approach,” J. Astrophys. Astron. 3, 419 (1982). [CrossRef]
  144. B. R. Frieden, “Restoring with Maximum Likelihood and Maximum Entropy,” J. Opt. Soc. Am. 62, 511 (1972). [CrossRef] [PubMed]
  145. S. J. Wernecke, L. R. D’Addario, “Maximum Entropy Image Reconstruction,” IEEE Trans. Comput. 26, 351 (1977). [CrossRef]
  146. M. C. Kemp, “Maximum Entropy Reconstruction in Emission Tomography,” Med. Radionuclide Imaging 1, 313 (1980).
  147. S. F. Burch, S. F. Gull, J. Skilling, “Image Restoration by a Powerful Maximum Entropy Method,” Comput. Vision Graphics Image Process. 23, 113 (1983). [CrossRef]
  148. C. L. Byrne, R. M. Fitzgerald, M. A. Fiddy, T. J. Hall, A. M. Darling, “Image Restoration and Resolution Enhancement,” J. Opt. Soc. Am. 73, 1481 (1983). [CrossRef]
  149. S. F. Gull, G. J. Daniell, “The Maximum Entropy Method,” in Image Formation from Coherence Functions in Astronomy, C. van Schooneveld, Ed. (D. Reidel, Hingham, Mass., 1979), pp. 219–225.
  150. R. Kikuchi, B. H. Stoffer, “Maximum Entropy Image Restoration. I: The Entropy Expression,” J. Opt. Soc. Am. 67, 1656 (1977). [CrossRef]
  151. E. T. Jaynes, “On the Rationale of Maximum Entropy Methods,” Proc. IEEE 70, 939 (1982). [CrossRef]
  152. A. Lent, “A Convergent Algorithm for Maximum Entropy Image Reconstruction with a Medical X-Ray Application,” in Image Analysis and Evaluation, R. Shaw, Ed. (Society of Photographic Scientists and Engineers, Washington, D.C., 1977), pp. 249–257.
  153. T. Elfring, “A Method for Computing the Maximum Entropy Solution of a Linear System,” LiTh-MAT-R-1978-4, Department of Mathematics, Linkoping U., Linkoping, Sweden (1978).
  154. B. R. Frieden, J. J. Burke, “Restoring with Maximum Entropy. II: Superresolution of Photographs of Diffraction-Blurred Impulses,” J. Opt. Soc. Am. 62, 1202 (1972). [CrossRef]
  155. J. P. Burg, “Maximum Entropy Spectral Analysis,” in Proceedings, Thirty-seventh Meeting of the Society of Exploration Geophysicists, Oklahoma City (1967).
  156. B. R. Frieden, D. C. Wells, “Restoring with Maximum Entropy. III: Poisson Sources and Backgrounds,” J. Opt. Soc. Am. 68, 93 (1978). [CrossRef]
  157. B. R. Frieden, “Image Restoration Using a Norm of Maximum Information,” Opt. Eng. 19, 290 (1980). [CrossRef]
  158. R. Gordon, R. Bender, G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-Ray Photography,” J. Theoret. Biol. 29, 471 (1970). [CrossRef]
  159. R. Gordon, G. T. Herman, “Reconstruction of Pictures from their Projections,” Commun. ACM 14, 759 (1971). [CrossRef]
  160. S. Sibisi, “Two-Dimensional Reconstructions from One-Dimensional Data by Maximum Entropy,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA11
  161. L. R. D’Addario, “Maximum a Posteriori Probability and Maximum Entropy Reconstruction,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper WA5.
  162. S. J. Wernecke, “Maximum Entropy Image Reconstruction,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper WA6.
  163. A. J. Rockmore, A. Macovski, “A Maximum Likelihood Approach to Transmission Image Reconstruction from Projections,” IEEE Trans. Nucl. Sci. NS-24, 1929 (1977). [CrossRef]
  164. A. J. Rockmore, A. Macovski, “A Maximum Likelihood Approach to Image Reconstruction,” in Proceedings, Joint Automatic Control Conference, San Francisco (1977), pp. 782–786.
  165. S. L. Wood, M. Morf, A. Macovski, “Stochastic Methods Applied to Medical Image Reconstruction,” in Proceedings, IEEE Conference on Decision and Control (IEEE, New York, 1977), pp. 35–41.
  166. S. L. Wood, A. Macovski, M. Morf, “Reconstructions with Limited Data Using Estimation Theory,” in Computer Aided Tomography and Ultrasonics in Medicine, G. T. Herman, Ed. (North-Holland, Amsterdam, 1979), pp. 219–233.
  167. M. H. Buonocore, W. R. Brody, A. Macovski, “Fast Minimum Variance Estimator for Limited Angle CT Image Reconstruction,” Med. Phys. 8, 695 (1981). [CrossRef] [PubMed]
  168. K. M. Hanson, G. W. Wecksung, “Bayesian Approach to Limited-Angle CT Reconstruction,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA6.
  169. K. M. Hanson, G. W. Wecksung, “Bayesian Approach to Limited-Angle Reconstruction in Computed Tomography,” J. Opt. Soc. Am. 73, 1501 (1983). [CrossRef]
  170. D. J. Rossi, A. S. Willsky, “Reconstruction from Projections Based on Detection and Estimation of Objects—Parts I and II: Performance Analysis and Robustness Analysis,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 886 (1984). [CrossRef]
  171. D. J. Rossi, A. S. Willsky, “Localization from Projections Based on Detection and Estimation of Objects,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA3.
  172. H. Hurwitz, J. E. Rumbaugh, “Comparison of Point Response Function and Bayesian Criteria in Image Reconstruction,” 76CRD207, General Electric Corporate Research and Development, Schenectady, N.Y. (1977).
  173. E. Tanaka, A. T. Iinuma, “Correction Functions for Optimizing the Reconstructed Image in Transverse Section Scan,” Phys. Med. Biol. 20, 789. [PubMed]
  174. T. J. Cornwell, “The Use of Bayesian Statistics in Image Estimation from Interferometer Data,” Image Formation from Coherence Functions in Astronomy, C. van Schooneveld, Ed. (D. Reidel, Hingham, Mass., 1979), pp. 227–234.
  175. H. Katsulai, N. Arimizu, “Reconstruction from Limited Angular Projection Data Using Constrained Optimization,” IEEE Trans. Nucl. Sci. NS-30, 1870 (1983). [CrossRef]
  176. T. S. Durrani, C. E. Goutis, “Optimisation Techniques for Digital Image Reconstruction from their Projections,” IEE Proc. 6, 161 (1980).
  177. Y. Bresler, A. Macovski, “A Hierarchical Bayesian Approach to Reconstruction from Projections of a Multiple Object 3-D Scene,” in Proceedings, Seventh International Conference, Pattern Recognition (IEEE, New York, 1984), pp. 455–457.
  178. Y. Bresler, A. Macovski, “Estimation of 3-D Shape of Blood Vessels from X-Ray Images,” in Proceedings, International Symposium on Medical Images and Icons (IEEE Computer Society, New York, 1984), pp. 251–258.
  179. Y. Bresler, A. Macovski, “3-D Reconstruction from Projections Based on Dynamic Object Models,” in Proceedings International Conference on Acoustics, Speech, and Signal Processing (IEEE, New York, 1984).
  180. M. J. Lahart, “Linear Estimation with a Size Constraint,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA5.
  181. M. J. Lahart, “Estimation of Reconstructions in Computed Tomography,” J. Opt. Soc. Am. 71, 1155 (1981). [CrossRef]
  182. B.F. Logan, L. A. Shepp, “Optimal Reconstruction of a Function from its Projections,” Duke Math. J. 42, 645 (1975). [CrossRef]
  183. M. H. Buonocore, W. R. Brody, S. L. Wood, “Polar Pixel Kalman Filter for Limited Data Computed Tomography (CT) Image Reconstruction,” Proc. Soc. Photo-Opt. Instrum. Eng. 206, 109 (1979).
  184. P. V. Sankar, O. Nalcioglu, J. Sklansky, “Undersampling Errors in Region-of-Interest Tomography,” IEEE Trans. Med. Imaging MI-1, 168 (1982). [CrossRef]
  185. O. Nalcioglu, P. V. Sankar, J. Sklansky, “Region of Interest X-Ray Tomography,” in Proc. Soc. Photo-Opt. Instrum. Eng. 206, 98 (1979).
  186. P. B. Heffernan, R. H. T. Bates, “Image Reconstruction from Projections. VI: Comparison of Interpolation Methods,” Optik 60, 129 (1982).
  187. R. M. Lewitt, “Processing of Incomplete Measurement Data in Computed Tomography,” Med. Phys. 6, 412 (1979). [CrossRef] [PubMed]
  188. B. E. Oppenheim, “Three Dimensional Reconstruction from Incomplete Projections,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper WA1.
  189. R. H. T. Bates, R. M. Lewitt, T. M. Peters, P. R. Smith, “Image Reconstruction from Incomplete Projections,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper WA2.
  190. S. C. Huang, M. E. Phelps, E. J. Hoffman, “Effect of Out-of-Field Objects in Transaxial Reconstruction Tomography,” in Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M. M. Ter-Pogossian et al., Eds. (University Park Press, Baltimore, 1977), pp. 185–198.
  191. K. Kouris, H. Tuy, A. Lent, G. T. Herman, R. M. Lewitt, “Reconstructing from Sparsely Sampled Data by ART with Interpolated Rays,” IEEE Trans. Med. Imaging MI-1, 161 (1982). [CrossRef]
  192. K. Ogawa, M. Nakajima, S. Yuta, “A reconstruction Algorithm from Truncated Projections,” IEEE Trans. Med. Imaging MI-3, 34 (1984). [CrossRef]
  193. J. S. Choi, K. Ogawa, M. Nakajima, S. Yuta, “A Reconstruction Algorithm for Body Sections with Opaque Obstructions,” IEEE Trans. Sonics Ultrason. SU-29, 143 (1982). [CrossRef]
  194. O. Nalcioglu, Z. H. Cho, R. Y. Lou, “Limited Field of View Reconstruction in Computerized Tomography,” IEEE Trans. Nucl. Sci. NS-26, (1979).
  195. Th. Hinderling, P. Ruegsegger, M. Anliker, “CT Reconstruction from Hollow Projections: An Application to in vivo Evaluation of Artificial Hip Joints,” in Third International Conference on Bone Measurements, New Orleans (1976).
  196. M. H. Buonocore, W. R. Brody, A. Macovski, “A Natural Pixel Decomposition for Two-Dimensional Image Reconstruction,” IEEE Trans. Biomed. Eng. BME-28, 69 (1981). [CrossRef]
  197. B. K. P. Horn, “Density Reconstruction Using Arbitrary Ray Sampling Schemes,” Proc. IEEE 66, 551 (1978). [CrossRef]
  198. G. W. Wecksung, K. M. Hanson, “Some Results on the Use of Local Basis Functions for Reconstruction Representation in Computed Tomography,” in Technical Digest, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging (Optical Society of America, Washington, D.C., 1984), paper TuC5.
  199. Y. S. Shim, Z. H. Cho, “SVD Pseudoinversion Image Reconstruction,” IEEE Trans. Acoust. Speech Signal Process. ASSP-29, 904 (1981). [CrossRef]
  200. F. A. Grunbaum, “Limited Angle Reconstruction Problems in X-Ray and NMR Tomography,” Proc. Soc. Photo-Opt. Instrum. Eng. 372, 185 (1982).
  201. A. J. Devaney, “Coherent Optical Tomography,” in Technical Digest, Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging (Optical Society of America, Washington, D.C., 1984), paper TuD3.
  202. A. J. Devaney, “A Computer Simulation of Diffraction Tomography,” IEEE Trans. Biomed. Eng. BME-30, 377 (1983). [CrossRef]
  203. A. J. Devaney, “A Filtered Backpropagation Algorithm for Diffraction Tomography,” Ultrason. Imaging 4, 336 (1982). [CrossRef] [PubMed]
  204. S-K Chang, Y. R. Wang, “Three-Dimensional Object Reconstruction from Orthogonal Projections,” Pattern Recognition 7, 167 (1975). [CrossRef]
  205. S-K Chang, C. K. Chow, “The Reconstruction of Three-Dimensional Objects from Two Orthogonal Projections and its Application to Cardiac Cineangiography,” IEEE Trans. Comput. C-22, 18 (1973). [CrossRef]
  206. C. H. Slump, J. J. Gerbrands, “A Network Flow Approach to Reconstruction of the Left Ventricle from Two Projections,” Comput. Graphics Image Process. 18, 18 (1982). [CrossRef]
  207. D. G. W. Onnasch, W. Schmitz, P. H. Heintzen, “Problems of the Binary Reconstruction of the Left and Right Ventricles from Biplane Angiocardiograms,” in Digital Imaging in Cardiovascular Radiology: International Symposium Kiel, R. Brennecke, G. Thieme, Eds. (Springer-Verlag, Stuttgart, 1983), pp. 141–151.
  208. J. H. C. Reiber, J. J. Gerbrands, G. J. Troost, C. J. Kooijman, C. H. Slump, “3-D Reconstruction of Coronal Arterial Segments for Two Projections,” Digital Imaging in Cardiovascular Radiology: International Symposium Kiel, R. Brennecke, G. Thieme, Eds. (Springer-Verlag, Stuttgart, 1983), pp. 151–163.
  209. S-K Chang, “The Reconstruction of Binary Patterns from Their Projections,” Commun. ACM 14, 21 (1971). [CrossRef]
  210. G. T. Herman, “Reconstruction of Binary Patterns from a Few Projections,” in International Computing Symposium (1973), A. Gunther et al., Eds. (North-Holland, New York, 1974), pp. 371–379.
  211. S.-K. Chang, “Algorithm 445-Binary Pattern Reconstruction from Projections,” Commun. ACM 16, 185 (1973). [CrossRef]
  212. S.-K. Chang, G. L. Shelton, “Two Algorithms for Multiple-View Binary Pattern Reconstruction,” IEEE Trans. Syst. Man. Cybern. 1, 90 (1971).
  213. J. Lau, “Remarks on Algorithm 445-Binary Pattern Reconstruction from Projections,” Commun. ACM 16, 186 (1973).
  214. A. M. Darling, T. J. Hall, M. A. Fiddy, “Stable, Noniterative Object Reconstruction from Incomplete Data Using a priori Knowledge,” J. Opt. Soc. Am. 73, 1466 (1983). [CrossRef]
  215. K. M. Hanson, “CT Reconstruction from Limited Projection Angles,” Proc. Soc. Photo-Opt. Instrum. Eng. 347 (1982).
  216. A. M. Darling, T. J. Hall, M. Fiddy, “Stable, Noniterative, Object Reconstruction from Incomplete Data Using Prior Knowledge,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper WA9.
  217. H. K. Tuy, “An Algorithm for Incomplete Range of Views Reconstruction,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA1.
  218. K. M. Hanson, “Limited Angle CT Reconstruction Using a priori Information,” in Proceedings First International Symposium on Medical Imaging Image Interpretation ISMII ’82 (IEEENew York, 1982), pp. 527–533.
  219. T. J. Hall, A. M. Darling, M. A. Fiddy, “Image Compression and Restoration Incorporating Prior Knowledge,” Opt. Lett. 7, 467 (1982). [CrossRef] [PubMed]
  220. B. P. Medoff, W. R. Brody, A. Macovski, “The Use of a priori Information in Image Reconstruction from Limited Data,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA7.
  221. R. G. Paxman, G. R. Gindi, H. H. Barrett, “Incorporation of Prior Constraints in Tomographic Reconstruction from Coded Images,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper FA8.
  222. H. H. Barrett, W. Swindel, “Analog Reconstruction Methods for Transaxial Tomography,” Proc. IEEE 65, 89 (1977). [CrossRef]
  223. J. M. Costa, A. N. Venetsanopoulos, M. Trefler, “Digital Tomographic Filtering of Radiographs,” IEEE Trans. Med. Imaging MI-2, 76 (1983). [CrossRef]
  224. J. M. Costa, A. N. Venetsanopoulos, M. Trefler, “Design and Implementation of Digital Tomographic Filters,” IEEE Trans. Med. Imaging MI-2, 89 (1983). [CrossRef]
  225. J. R. Spears, T. Sandor, R. Kruger, W. Hanlon, S. Paulin, G. Minerbo, “Computer Reconstruction of Luminal Cross Sectional Shape from Multiple Cineangiographic Views,” IEEE Trans. Med. Imaging MI-2, 49 (1983). [CrossRef]
  226. P. Edholm, G. Granlund, H. Knutsson, C. Petersson, “Ec-omography: A New Radiographic Method for Reproducing a Selected Slice of Varying Thickness,” Acta Radiol. 21, 433 (1980).
  227. D. G. Grant, “Tomosynthesis: A Three Dimensional Radiographic Imaging Technique,” IEEE Trans. Biomed. Eng. BME-19, 20 (1972). [CrossRef]
  228. B. R. Altschuler, R. M. Perry, M. D. Altschuler, “Computerized Multiangular Tomography,” Proc. Soc. Photo-Opt. Instrum. Eng. 40, 139 (1973).
  229. J. J. Lefebvre, J. Marilleau, T. Rosseau, P. Tremelat, “Tomographic Reconstruction from a Limited Numbes of Projections,” Proc. Soc. Photo-Opt. Instrum. Eng. 312, 195 (1983).
  230. R. B. Guenther, C. W. Kerber, E. K. Killian, K. T. Smith, S. L. Wagner, “Reconstruction of Objects from Radiographs and Location of Brain Tumors,” Proc. Natl. Acad. Sci. USA 71, 4884 (1974). [CrossRef] [PubMed]
  231. E. R. Miller, E. W. McCurry, B. Hruska, “An Infinite Number of Laminagrams from a Finite Number of Radiographs,” Radiology 98, 249 (1971). [PubMed]
  232. R. A. Groenhuis, R. L. Webber, U. E. Ruttimann, “Computerized Tomosynthesis of Dental Tissues,” Oral Surg. Oral Med. Oral Pathol. 56, 206 (1983), [CrossRef] [PubMed]
  233. U. E. Ruttimann, R. A. J. Groenhuis, R. L. Webber, “Computer Tomosynthesis: A Versatile Three-Dimensional Imaging Technique,” in Proceeding, Seventh Annual Symposium on Computer Applications in Medical Care (IEEE Computer Society, Silver Spring, Md., 1983), pp. 7833–786.
  234. J. B. Garrison, D. G. Grant, W. H. Guier, R. J. Johns, “Three Dimensional Roentgenography,” Am. J. Roentgenol. Radium Ther. Nucl. Med. 105, 903 (1969). [PubMed]
  235. P. Edholm, “The Tomogram—Its Formation and Content,” Acta Radiol. (Supplement 193) 1 (1960).
  236. D. Westra, Zonography—The Narrow-angle Tomography (Excerpta Medica Foundation, Amsterdam, 1966).
  237. C. Petersson, Studies in Ectomography (Department of Medical Engineering, Karolinska Instituet, Stockholm, 1981).
  238. A. C. Kak, C. V. Jakowatz, “Computerized Tomography Using Video Recorded Fluoroscopic Images,” in Image Processing for 2-D and 3-D Reconstruction from Projections: Theory and Practice in Medicine and the Physical Sciences, R. Gordon, Ed. (Optical Society of America, Washington, D.C., 1975), paper WB1.
  239. A. C. Kak, C. V. Jakowatz, N. A. Baily, R. A. Keller, “Computerized Tomography Using Video Recorded Fluoroscopic Images,” IEEE Trans. Biomed. Eng. BME-24, 157 (1977). [CrossRef]
  240. N. A. Baily, “Computerized Tomography Using Video Techniques,” Opt. Eng. 16, 23 (1977). [CrossRef]
  241. J. Gassmann, “Optimal Iterative Image Reconstruction with Incomplete and Approximate Data,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints, (Optical Society of America, Washington, D.C., 1983), paper WA11.
  242. W. E. Smith, H. H. Barrett, R. G. Paxman, “Reconstruction of Objects from Coded Images by Simulated Annealing,” in Technical Digest, Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints (Optical Society of America, Washington, D.C., 1983), paper WA13.
  243. D. C. Solmon, “The X-Ray Transform,” J. Math. Anal. Appl. 56, 61 (1976). [CrossRef]
  244. B. R. Hunt, “The Inverse Problem of Radiography,” Math. Biosci. 8, 161 (1970). [CrossRef]
  245. Z. H. Cho, J. K. Chan, “A Comparative Study of 3-D Image Reconstruction Algorithms with Reference to Number of Projections and Noise Filtering,” IEEE Trans. Nucl. Sci. NS-22, 344 (1975). [CrossRef]
  246. R. N. Bracewell, S. J. Wernecke, “Image Reconstruction ‘over a Finite Field of View,” J. Opt. Soc. Am. 65, 1342 (1975). [CrossRef]
  247. B. Macdonald, V. Perez-Mendez, “Contribution of Time-of-Flight Information to Limited Angle Positron Tomography,” IEEE Trans. Nucl. Sci. NS-29, 516 (1982). [CrossRef]
  248. K. F. Koral, N. H. Clinthorne, W. L. Rogers, J. W. Keyes, “Feasibility of Sharpening Limited-Angle Tomography by Including an Orthogonal Set of Projections,” Nucl. Instrum. Methods 193, 223 (1982). [CrossRef]
  249. G. Kowalski, “Fast 3-D Scanning Systems Using a Limited Tilting Angle,” Appl. Opt. 16, 1686 (1977). [CrossRef] [PubMed]
  250. O. Nalcioglu, Z. H. Cho, R. Y. Lou, “Limited Field of View Reconstruction in Computerized Tomography,” IEEE Trans. Nucl. Sci. NS-26, 546 (1979). [CrossRef]
  251. J. C. Gore, S. Leeman, “The Reconstruction of Objects from Incomplete Projections,” Phys. Med. Biol. 25, 129 (1980). [CrossRef] [PubMed]
  252. B. Schorr, D. Townsend, “Filters for Three-Dimensional Limited-Angle Tomography,” Phys. Med. Biol. 26, 305 (1981). [CrossRef] [PubMed]
  253. G. V. Borgiotti, “Optimum Coherent Imaging of a Limited Field of View in the Presence of Angular and Aperture Noise,” J. Franklin Inst. 303, 155 (Feb.1977). [CrossRef]
  254. M. E. Davison, F. A. Grunbaum, “Convolution Algorithms for Arbitrary Projection Angles,” IEEE Trans. Nucl. Sci. NS-26, 2670 (1979). [CrossRef]
  255. W. Wagner, “Reconstructions from Restricted Region Scan Data. New Means to Reduce Patient Dose,” IEEE Trans. Nucl. Sci. NS-26, 2866 (1979). [CrossRef]
  256. M. E. Davison, F. A. Grunbaum, “Tomographic Reconstruction with Arbitrary Directions,” Commun. Pure Appl. Math. 34, 77 (1981). [CrossRef]
  257. M. Goitein, “Three-Dimensional Density Reconstruction from a Series of Two Dimensional Projections,” Nucl. Instrum. Methods 101, 509 (1972). [CrossRef]
  258. C. H. Leung, H. C. Lee, “Effectiveness of Interpolation in the Time Domain for Computed Tomography of Moving Objects,” IEEE Trans. Biomed. Eng. BME-28, 582 (1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited