OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 23 — Dec. 1, 1985
  • pp: 4028–4039

Local basis-function approach to computed tomography

Kenneth M. Hanson and George W. Wecksung  »View Author Affiliations


Applied Optics, Vol. 24, Issue 23, pp. 4028-4039 (1985)
http://dx.doi.org/10.1364/AO.24.004028


View Full Text Article

Enhanced HTML    Acrobat PDF (2672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the local basis-function approach, a reconstruction is represented as a linear expansion of basis functions, which are arranged on a rectangular grid and possess a local region of support. The basis functions considered here are positive and may overlap. It is found that basis functions based on cubic B-splines offer significant improvements in the calculational accuracy that can be achieved with iterative tomographic reconstruction algorithms. By employing repetitive basis functions, the computational effort involved in these algorithms can be minimized through the use of tabulated values for the line or strip integrals over a single-basis function. The local nature of the basis functions reduces the difficulties associated with applying local constraints on reconstruction values, such as upper and lower limits. Since a reconstruction is specified everywhere by a set of coefficients, display of a coarsely represented image does not require an arbitrary choice of an interpolation function.

© 1985 Optical Society of America

History
Original Manuscript: November 20, 1984
Published: December 1, 1985

Citation
Kenneth M. Hanson and George W. Wecksung, "Local basis-function approach to computed tomography," Appl. Opt. 24, 4028-4039 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-23-4028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Andrews, C. L. Patterson, “Digital Interpolation of Discrete Images,” IEEE Trans. Comput. C-25, 196 (1976). [CrossRef]
  2. R. Gordon, G. T. Herman, “Three-Dimensional Reconstruction from Projections: a Review of Algorithms,” Cytol. 38, 111 (1974).
  3. G. T. Herman, A. Lent, “Iterative Reconstruction Algorithms,” Comput. Biol. Med. 6, 273 (1976). [CrossRef] [PubMed]
  4. R. J. Lytle, K. A. Dines, “Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,” IEEE Trans. Geosci. Remote Sensing GRS-18, 234 (1980). [CrossRef]
  5. G. T. Herman, A. Lent, “A Computer Implementation of a Bayesian Analysis of Image Reconstruction,” Inf. Control 31, 364 (1976). [CrossRef]
  6. B. R. Hunt, “Bayesian Methods in Nonlinear Digital Image Restoration,” IEEE Trans. Comput. C-26, 219 (1977). [CrossRef]
  7. K. M. Hanson, “Limited Angle CT Reconstruction Using a priori Information,” Proceedings First International Symposium on Medical Imaging and Image Interpretation, Berlin (IEEE Computer Society, Silver Spring, Md., 1982), pp. 527–533.
  8. K. M. Hanson, G. W. Wecksung, “Bayesian Approach to Limited-Angle Reconstruction in Computed Tomography,” J. Opt. Soc. Am. 73, 1501 (1983). [CrossRef]
  9. R. A. Brooks, G. DiChiro, “Theory of Image Reconstruction in Computed Tomography,” Radiology 117, 561 (1975). [PubMed]
  10. R. Gordon, R. Bender, G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-Ray Photography,” J. Theoret. Biol. 29, 471 (1970). [CrossRef]
  11. R. A. Crowther, A. Klug, “ART and Science, or Conditions for 3-D Reconstruction from Electron Microscope Images,” J. Theoret. Biol. 32, 199 (1971). [CrossRef]
  12. P. Gilbert, “Iterative Methods for the Three-Dimensional Reconstruction of an Object from Projections,” J. Theoret. Biol. 36, 105 (1972). [CrossRef]
  13. S. H. Bellman, R. Bender, R. Gordon, J. E. Rowe, “ART is Science, Being a Defense of Algebraic Reconstruction Techniques for Three-Dimensional Electron Microscopy,” J. Theoret. Biol. 32, 205 (1971). [CrossRef]
  14. G. T. Herman, A. Lent, S. W. Rowland, “ART: Mathematics and Applications,” J. Theoret. Biol. 42, 1 (1973). [CrossRef]
  15. R. Gordon, “A Tutorial on ART (Algebraic Reconstruction Techniques),” IEEE Trans. Nucl. Sci. NS-21, 78 (1974).
  16. H. S. Hou, H. C. Andrews, “Least Squares Image Restoration Using Spline Basis Functions,” IEEE Trans. Comput. C-26, 856 (1977). [CrossRef]
  17. H. S. Hou, H. C. Andrews, “Cubic Splines for Image Interpolation and Digital Filtering,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-26, 508 (1978).
  18. K. M. Hanson, “Detectability in Computed Tomographic Images,” Med. Phys. 6, 441 (1979). [CrossRef] [PubMed]
  19. K. M. Hanson, “On the Optimality of the Filtered Backprojection Algorithm,” J. Comput. Assist. Tomogr. 4, 361 (1980). [CrossRef] [PubMed]
  20. P. M. Joseph, R. D. Spital, C. D. Stockham, “The Effects of Sampling on CT Images,” Comput. Tomogr. 4, 189 (1980). [CrossRef] [PubMed]
  21. R. C. Allen, W. R. Boland, G. M. Wing, “Numerical Experiments Involving Galerkin and Collocation Methods for Linear Integral Equations of the First Kind,” J. Comput. Phys. 49, 465 (1983). [CrossRef]
  22. A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications (Wiley, New York, 1974).
  23. H. B. Buonocore, W. R. Brody, A. Macovski, “Natural Pixel Decomposition for Two-Dimensional Image Reconstruction,” IEEE Trans. Biomed. Eng. BME-28, 69 (1981). [CrossRef]
  24. D. G. McCaughey, H. C. Andrews, “Degrees of Freedom for Projection Imaging,” IEEE Trans. Acoust. Speech Signal Process. ASSP-25, 63 (1977). [CrossRef]
  25. B. R. Hunt, “A Theorem on the Difficulty of Numerical Deconvolution,” IEEE Trans. Acoust. Ultrasound, AU-20, 94 (1972).
  26. A. Lent, “A Convergent Algorithm for Maximum Entropy Image Reconstruction, with a Medical X-Ray Application,” Proceedings, SPSE International Conference on Image Analysis and Evaluation, R. Shaw, Ed., Toronto, 19–23 July (Society of Photographic Scientists Engineers, Washington, D.C., 1976), pp. 249–257.
  27. G. Minerbo, “MENT: A Maximum-Entropy Algorithm for Reconstructing a Source from Projection Data,” Comput. Graphics Image Process. 10, 48 (1979). [CrossRef]
  28. A. M. Cormack, “Representation of a Function by its Line Integrals, with Some Radiological Applications,” J. Appl. Phys. 45, 2722 (1963). [CrossRef]
  29. A. M. Cormack, “Representation of a Function by its Line Integrals, with Some Radiological Applications. II,” J. Appl. Phys. 35, 2908 (1964). [CrossRef]
  30. A. Rosenfeld, A. C. Kak, Digital Picture Processing (Academic, New York, 1976). [CrossRef]
  31. S. L. Wood, A. Macovski, M. Morf, “Reconstructions with Limited Data Using Estimation Theory,” Computer Aided Tomography and Ultrasonics in Medicine, J. Raviv, J. F. Greenleaf, G. T. Herman, Eds. (North-Holland, Amsterdam, 1979), pp. 219–233.
  32. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  33. F. B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill, New York, 1956), pp. 319–324.
  34. K. M. Hanson, “Variations in Task and the Ideal Observer,” Proc. Soc. Photo. Opt. Instrum. Eng. 419, 60 (1983).
  35. K. M. Hanson, “Optical Object and Edge Localization in the Presence of Correlated Noise,” Proc. Soc. Photo-Opt. Instrum. Eng. 454, 9 (1984).
  36. H. B. Kekre, S. C. Sahasrabudhe, N. C. Goyal, “Restoration of Noisy Images Using a Raised Cosine Function Approximation,” Comput. Vision Graphics Image Process. 26, 17 (1984). [CrossRef]
  37. G. T. Herman, “On Modifications to the Algebraic Reconstruction Techniques,” Comput. Biol. Med. 9, 271 (1979). [CrossRef] [PubMed]
  38. J. M. Hyman, “Accurate Monotonicity Preserving Cubic Interpolation,” SIAM J. Sci. Stat. Comput. 4, 645 (1983). [CrossRef]
  39. K. M. Hanson, “Image Processing: Science, Engineering, or Art?,” Proc. Soc. Photo-Opt. Instrum. Eng. 535, 70 (1985).
  40. K. Aki, A. Christoffersson, E. S. Husebye, “Determination of the Three-Dimensional Seismic Structure of the Lithosphere,” J. Geophys. Res. 82, 277 (1977). [CrossRef]
  41. K. Tanabe, “Projection Method for Solving a Singular System of Linear Equations and its Applications,” Numer. Math. 17, 203 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited