OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 24 — Dec. 15, 1985
  • pp: 4473–4482

Diffraction by an aberrated optical system with nonuniform amplitude transmission: results for primary coma

Subhash C. Biswas and Jean-Eudes Villeneuve  »View Author Affiliations


Applied Optics, Vol. 24, Issue 24, pp. 4473-4482 (1985)
http://dx.doi.org/10.1364/AO.24.004473


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffraction image of a point source due to an optical system with residual primary coma and nonuniform amplitude transmission is studied in order to obtain a suitable expression for the fractional encircled energy distribution in the Fraunhofer plane. Numerical results are obtained for a series of pupil filters and for various amounts of coma in the system. Intensity distribution, fractional encircled energy distribution, Strehl ratio, two-point resolution, and comatic elongation are the properties of the diffraction field that have been examined. A comparative study of the performance of these pupil filters under influence of primary coma is also presented.

© 1985 Optical Society of America

History
Original Manuscript: May 3, 1985
Published: December 15, 1985

Citation
Subhash C. Biswas and Jean-Eudes Villeneuve, "Diffraction by an aberrated optical system with nonuniform amplitude transmission: results for primary coma," Appl. Opt. 24, 4473-4482 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-24-4473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J-E. Villeneuve, A. Boivin, S. C. Biswas, “L’image Tridimensionnelle du Point en Présence d’Aberration Sphérique Primaire et de Filtrage d’Amplitude: Unitaire ou Modal,” Can J. Phys. 63, 287 (1985). [CrossRef]
  2. J-E. Villeneuve, S. C. Biswas, A. Boivin, “Image Diffraction-nelle due à Une Pupille Aberrante Non-uniforme,” Can. J. Phys. 63, 275 (1985). [CrossRef]
  3. S. C. Biswas, J-E. Villeneuve, “Combined Effect of All Aberrations and a Pupil Filter on the Diffraction Image,” J. Opt. Soc. Am. A 1, 1316A (1984).
  4. Y. Li, “Establishment of the Maximum Encircled Energy in the Geometrical Focal Plane,” Opt. Acta 31, 1107 (1984). [CrossRef]
  5. V. N. Mahajan, “Line of Sight of an Aberrated Optical System,” J. Opt. Soc. Am. A 2, 833 (1985). [CrossRef]
  6. H. H. Hopkins, “Image Shift, Phase Distortion and Optical Transfer Function,” Opt. Acta 31, 345 (1984). [CrossRef]
  7. S. A. Self, “Focusing of Spherical Gaussian Beams,” Appl. Opt. 22, 658 (1983). [CrossRef] [PubMed]
  8. M. J. Yzuel, J. Calvo, “Point-Spread Function Calculation for Optical Systems with Residual Aberrations and a Non-Uniform Transmission Pupil,” Opt. Acta 30, 233 (1983). [CrossRef]
  9. G. I. Greisukh, S. A. Stepanor, “Aberrational Analysis of Optical Systems with Diffraction Elements,” Opt. Spectros. 54, 93 (1983).
  10. S. Szapiel, “Aberration Balancing Technique for Radially Symmetric Amplitude Distributions: A Generalization of the Maréchal Approach,” J. Opt. Soc. Am. 72, 947 (1982). [CrossRef]
  11. A. Dubik, “Analysis of The Effect of Diffraction and Apodization upon the Spatial-Energy Radiation—Characteristics in Nd-Glass Amplifiers,” J. Tech. Phys. 22, 3 (1981).
  12. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U.P., London, 1966).
  13. S. C. Biswas, A. Boivin, “Influence of Primary Astigmatism on the Performance of Optimum Apodizers,” J. Opt. (India) 4, 1 (1975).
  14. S. C. Biswas, A. Boivin, “Influence of Spherical Aberration on the Performance of Optimum Apodizers,” Opt. Acta 23, 569 (1976). [CrossRef]
  15. A. M. Clements, J. E. Wilkins, “Apodization for Maximum Encircled-Energy Ratio and Specified Rayleigh Limit,” J. Opt. Soc. Am. 64, 23 (1974). [CrossRef]
  16. R. Boivin, A. Boivin, “Optimized Amplitude Filtering for Superresolution over a Restricted Field,” Opt. Acta 27, 587, 1641 (1980); Opt. Acta 30, 681 (1983). [CrossRef]
  17. J-E. Villeneuve, “L’Image Tridimensionnelle du Point sous l’Influence Conjointe de l’Aberration Sphérique et du Filtrage d’Amplitude,” Doctoral Thesis, U. Laval, Québec (1981).
  18. H. Osterberg, J. E. Wilkins, “The Resolving Power of a Coated Objective,” J. Opt. Soc. Am. 39, 553 (1949). [CrossRef]
  19. H. Osterberg, F. C. Wissler, “The Resolution of Two Particles in a Bright Field by Coated Microscope Objectives,” J. Opt. Soc. Am. 39, 558 (1949). [CrossRef]
  20. J. E. Wilkins, “The Resolving Power of a Coated Objective II,” J. Opt. Soc. Am. 40, 222 (1950). [CrossRef]
  21. J. J. Stamnes, H. Heier, S. Ljunggren, “Encircled Energy for Systems with Centrally Obscured Circular Pupils,” Appl. Opt. 21, 1628 (1982). [CrossRef] [PubMed]
  22. S. C. Biswas, A. Boivin, “Performance of Optimum Apodizers in Presence of Primary Coma,” Can. J. Phys. 57, 1388 (1979). [CrossRef]
  23. G. Boyer, M. Séchaud, “Superresolution by Taylor Filters,” Appl. Opt. 12, 893 (1973). [CrossRef]
  24. B. R. Frieden, “The Extrapolation Pupil, Image Synthesis, and Some Thought Applications,” Appl. Opt. 9, 2489 (1970). [CrossRef] [PubMed]
  25. V. N. Mahajan, “Zernike Annular Polynomials for Imaging Systems with Annular Pupils,” J. Opt. Soc. Am. 71, 75 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited