OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 24, Iss. 24 — Dec. 15, 1985
  • pp: 4525–4533

Information content analysis of aerosol remote-sensing experiments using an analytic eigenfunction theory: anomalous diffraction approximation

Gabriel Viera and Michael A. Box  »View Author Affiliations

Applied Optics, Vol. 24, Issue 24, pp. 4525-4533 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An important step in any planned remote-sensing experiment is an analysis of the information content of the equations which will finally be inverted. In this paper we show the value of performing such an analysis using a recently developed analytic eigenfunction theory. So that we may fully utilize the analytic nature of this technique, we have applied it first to the anomalous diffraction approximation to the Mie theory extinction efficiency. Analytical expressions for the eigenfunctions and eigenvalues are derived. The effects of ill-conditioning, and their amelioration due to the inclusion of certain a priori knowledge, are then investigated.

© 1985 Optical Society of America

Original Manuscript: July 17, 1985
Published: December 15, 1985

Gabriel Viera and Michael A. Box, "Information content analysis of aerosol remote-sensing experiments using an analytic eigenfunction theory: anomalous diffraction approximation," Appl. Opt. 24, 4525-4533 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Deepak, Ed., Inversion Methods in Atmospheric Remote Sounding (Academic, New York, 1977).
  2. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, New York, 1980).
  3. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol Size Distributions Obtained by Inversion of Spectral Optical Depth Measurements,” J. Atmos. Sci. 35, 2153 (1978). [CrossRef]
  4. G. E. Shaw, “Inversion of Optical Scattering and Spectral Extinction Measurements to Recover Aerosol Size Spectra,” Appl. Opt. 18, 988 (1979). [CrossRef] [PubMed]
  5. E. Thomalla, H. Quenzel, “Information Content of Aerosol Optical Properties with Respect to Their Size Distribution,” Appl. Opt. 21, 3170 (1982). [CrossRef] [PubMed]
  6. G. Yamamoto, M. Tanaka, “Determination of Aerosol Size Distribution from Spectral Attenuation Measurements,” Appl. Opt. 8, 447 (1969). [CrossRef] [PubMed]
  7. R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: the Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982). [CrossRef] [PubMed]
  8. H. Quenzel, “Determination of Size Distribution of Atmospheric Aerosol Particles from Spectral Solar Radiation Measurements,” J. Geophys. Res. 75, 2915 (1970). [CrossRef]
  9. G. E. Shaw, J. A. Reagan, B. M. Herman, “Investigations of Atmospheric Extinctions Using Direct Solar Radiation Measurements Made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 374 (1973). [CrossRef]
  10. C. Tomasi, F. Prodi, M. Sentimenti, G. Cesari, “Multiwavelength Sun-Photometers for Accurate Measurements of Atmospheric Extinction in the Visible and Near-IR Spectral Range,” Appl. Opt. 22, 622 (1983). [CrossRef] [PubMed]
  11. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  12. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  13. G. W. Paltridge, C. M. R. Platt, Radiative Processes in Meteorology and Climatology (Elsevier, Amsterdam, 1976).
  14. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  15. F. Smithies, Integral Equations (Cambridge U.P., London, 1958).
  16. H. P. Baltes, Ed., Inverse Source Problems in Optics (Springer-Verlag, Berlin, 1978). [CrossRef]
  17. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, New York, 1977).
  18. A. Deepak, G. P. Box. “Representation of Aerosol Size Distribution Data by Analytic Models,” in Atmospheric Aerosols, Their Formation, Optical Properties, and Effects, A. Deepak, Ed. (Spectrum, Hampton, Va., 1982).
  19. O. N. Strand, “Theory and Methods Related to the Singular Function Expansion and Landweber’s Iteration for Integral Equations of the First Kind,” SIAM J. Numer. Anal. 11, 798 (1974). [CrossRef]
  20. C. D. Capps, R. L. Henning, G. M. Hess, “Analytic Inversion of Remote-Sensing Data,” Appl. Opt. 21, 3581 (1982). [CrossRef] [PubMed]
  21. Preliminary results are contained in M. A. Box, G. Viera, “Singular Function Theory of Remote Sensing Inversion,” presented at the IAMAP International Radiation Symposium, Perugia, Italy, Aug. 1984, to be published.
  22. J. G. McWhirter, E. R. Pike, “On the Numerical Inversion of the Laplace Transform and Similar Fredholm Integral Equations of the First Kind,” J. Phys. A 11, 1729 (1978). [CrossRef]
  23. G. F. Miller, “Fredholm Equations of the First Kind,” in Numerical Solution of Integral Equations, L. M. Delves, J. E. Walsh, Eds. (Clarendon, Oxford, 1974), pp. 178–188.
  24. M. A. Box, B. H. J. McKellar, “Determination of Moments of the Size Distribution Function in Scattering by Polydispersions,” Appl. Opt. 15, 2610 (1976). [CrossRef] [PubMed]
  25. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  26. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  27. M. A. Box, S. Y. Lo, B. H. J. McKellar, “Aerosol Optical Thicknesses Calculated Using the Anomalous Diffraction Approximation,” journal00, 000 (198x), in preparation.
  28. M. A. Box, B. H. J. McKellar, “Analytic Inversion of Multi-spectral Extinction Data in the Anomalous Diffraction Approximation,” Opt. Lett. 3, 91 (1978). [CrossRef] [PubMed]
  29. M. V. Barnhill, C. Russ, “Improving the Convergence of Solutions to the Fredholm Integral Equation of the First Kind,” J. Comput. Phys. 37, 268 (1980). [CrossRef]
  30. C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).
  31. M. A. Box, B. H. J. McKellar, “Inversion of Multispectral Extinction Data—The Anomalous Diffraction Approximation,” presented at the Topical Meeting on Atmospheric Aerosols, Williamsburg, Va. (Dec. 1976), paper WA-10A (available as NASA CP-2004).
  32. A. L. Fymat, “Analytical Inversions in Remote Sensing of Particle Size Distributions. 1: Multispectral Extinctions in the Anomalous Diffraction Approximation,” Appl. Opt. 17, 1675 (1978).
  33. K. S. Shifrin, A. Ya. Perelman, “The Determination of the Spectrum of Particles in a Dispersed System from Data on its Transparency,” Opt. Spectrosc. 15, 285 (1963).
  34. A. Ya. Perelman, K. S. Shifrin, “Improvements to the Spectral Transparency Method for Determining Particle-Size Distribution,” Appl. Opt. 19, 1787 (1980). [CrossRef] [PubMed]
  35. M. A. Box, B. H. J. McKellar, “Relationship Between Two Analytic Inversion Formulae for Multispectral Extinction Data,” Appl. Opt. 18, 3599 (1979). [CrossRef] [PubMed]
  36. M. A. Box, B. H. J. McKellar, “Further Relations Between Analytic Inversion Formulas for Multispectral Extinction Data,” Appl. Opt. 20, 3829 (1981). [CrossRef] [PubMed]
  37. A. L. Fymat, C. B. Smith, “Analytical Inversions in Remote Sensing of Particle Size Distributions. 4: Comparison of Fymat and Box-McKellar Solutions in the Anomalous Diffraction Approximation,” Appl. Opt. 18, 3595 (1979). [CrossRef] [PubMed]
  38. J. G. McWhirter, “A Well-Conditioned Cubic b-Spline Model for Processing Laser Anemometry Data,” Opt. Acta 28, 1453 (1981). [CrossRef]
  39. M. Bertero, E. R. Pike, “Particle Size Distributions from Fraunhofer Diffraction I. An Analytic Eigenfunction Approach,” Opt. Acta 30, 1043 (1983). [CrossRef]
  40. H. M. Nussenzveig, W. J. Wiscombe, “Efficiency Factors in Mie Scattering,” Phys. Rev. Lett. 45, 1490 (1980). [CrossRef]
  41. P. Attard, M. A. Box, G. Bryant, B. H. J. McKellar, “Asymptotic Behaviour of Mie Scattering Amplitude,” J. Opt. Soc. Am. A (1986), to be published. [CrossRef]
  42. B. H. J. McKellar, M. A. Box, C. F. Bohren, “Sum Rules for Optical Scattering Amplitudes,” J. Opt. Soc. Am. 72, 535 (1982). [CrossRef]
  43. M. A. Box, P. Attard, G. Bryant, B. H. J. McKellar, “Sum Rules for Mie Scattering,” J. Opt. Soc. Am. A submitted.
  44. G. Viera, M. A. Box, “Information Content Analysis of Remote Sensing Experiments Using Eigenfunctions, Workshop on Advances in Remote Sensing Retrieval Methods, Williamsburg, Va., Oct–Nov. 1984, to be published.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited