OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 8 — Apr. 15, 1985
  • pp: 1107–1112

Real-time curvature radii measurements using diffraction edge waves

Pierre Langlois, Roger A. Lessard, and Alberic Boivin  »View Author Affiliations


Applied Optics, Vol. 24, Issue 8, pp. 1107-1112 (1985)
http://dx.doi.org/10.1364/AO.24.001107


View Full Text Article

Enhanced HTML    Acrobat PDF (831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A laser beam impinging at grazing incidence on a 3-D surface produces a diffraction edge wave whose obliquity factor contains, among other things, the information concerning the local radius of curvature of the surface in the plane of incidence. In this paper we show how to retrieve this curvature radius information from light irradiance measurements of the edge wave and from exact electromagnetic diffraction calculations. This new method of optical metrology gives the curvature radius of a surface in the incident plane and at a given point by a single measurement at that point, while other techniques depend on a scanning or a mapping in the vicinity of the point of interest. Moreover, a measuring system using this diffractional method is very easily implemented and can yield a precision in the 5–10-μm range. Experimental results are presented for six metallic circular cylinders and two metallic spheres.

© 1985 Optical Society of America

History
Original Manuscript: August 25, 1984
Published: April 15, 1985

Citation
Pierre Langlois, Roger A. Lessard, and Alberic Boivin, "Real-time curvature radii measurements using diffraction edge waves," Appl. Opt. 24, 1107-1112 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-8-1107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara-Hernandez, M. V. R. K. Murty, A. Cornejo-Rodriguez, “Bibliography of Various Optical Testing Methods,” Appl. Opt. 14, 1065 (1975). [CrossRef]
  2. M. V. R. K. Murty, “Newton, Fizeau and Haidinger Interferometers,” in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), pp. 1–45.
  3. J. H. Bruning, “Fringe Scanning Interferometry,” in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), pp. 409– 437.
  4. J. C. Wyant, “Holographic and Moire Techniques,” in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), pp. 381–408.
  5. J. R. Varner, “Holographic Contouring Methods,” in Handbook of Optica $lography, H. J. Caulfield, Ed. (Academic, New York, 1979), pp. 595–600.
  6. H. Takasaki, “Moire Topography,” Jpn. J. Appl. Phys. Suppl. 14-1, 441 (1975).
  7. J. D. Evans, “Method for Approximating the Radius of Curvature of Small Concave Spherical Mirrors Using a He–Ne Laser,” Appl. Opt. 10, 995 (1971).
  8. F. M. Smolka, T. P. Caudell, “Surface Profile Measurement and Angular Deflection Monitoring Using a Scanning Laser Beam: a Noncontact Method,” Appl. Opt. 17, 3284 (1978). [CrossRef] [PubMed]
  9. J. B. Keller, “Diffraction by a Convex Cylinder,” IRE Trans. Antennas Propag. AP-4, 312 (1956). [CrossRef]
  10. J. B. Keller, “Geometrical Theory of Diffraction,” J. Opt. Soc. Am. 52, 116 (1962). [CrossRef]
  11. J. R. Wait, A. M. Conda, “Diffraction of Electromagnetic Waves by Smooth Obstacles for Grazing Angles,” J. Res. Natl. Bur. Stand. Sect. D 63, 181 (1959).
  12. R. G. Kouyoumjian, “The Geometrical Theory of Diffraction and Its Applications,” in Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed. (Springer, New York, 1975), pp. 165–215. [CrossRef]
  13. P. Langlois, “Diffraction of an e.m. Wave by an Absorbing Circular Cylinder,” Opt. Acta 30, 1373 (1983). [CrossRef]
  14. P. Langlois, A. Boivin, R. A. Lessard, “Electromagnetic Diffraction of a Transversal 2-D Gaussian Beam at Normal Incidence on an Absorbing Circular Cylinder,” Can. J. Phys. 63, Feb. (1985). (Special issue on Optics). [CrossRef]
  15. P. Langlois, A. Boivin, R. A. Lessard, “Electromagnetic Diffraction of a 3D Gaussian Laser Beam at Grazing Incidence on a Large Absorbing Circular Cylinder,” J. Opt. Soc. Am. A., (June1985), in press. [CrossRef]
  16. K. Miyamoto, E. Wolf, “Generalization of the Maggi-Rubinowicz Theory of the Boundary Diffraction Wave–Part I,” J. Opt. Soc. Am. 52, 615 (1962). [CrossRef]
  17. K. Miyamoto, E. Wolf, “Generalization of the Maggi-Rubinowicz Theory of the Boundary Diffraction Wave–Part II,” J. Opt. Soc. Am. 52, 626 (1962). [CrossRef]
  18. J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, 1969).
  19. P. Langlois, M. Cormier, R. Beaulieu, M. Blanchard, “Experimental Evidence of Edge Parameter Effects in Light Diffraction, Using Holography,” J. Opt. Soc. Am. 67, 87 (1977). [CrossRef]
  20. T. Takenaka, O. Fukumitsu, “Asymptotic Representation of the Boundary-Diffraction Wave for a Three-Dimensional Gaussian Beam Incident Upon a Kirchhoff Half-Screen,” J. Opt. Soc. Am. 72, 331 (1982). [CrossRef]
  21. S. Kozaki, “High Frequency Scattering of a Gaussian Beam by a Conducting Cylinder,” IEEE Trans. Antennas Propag. AP-31, 795 (1983). [CrossRef]
  22. V. A. Fock, Electromagnetic Diffraction and Propagation Problems (Pergamon, London, 1965), p. 6.
  23. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1970).
  24. L. G. Schulz, “Optical Constants of Silver, Gold, Copper, and Aluminum. I. The Absorption Coefficient k,” J. Opt. Soc. Am. 44, 357 (1954). [CrossRef]
  25. L. G. Schulz, F. R. Tangherlini, “Optical Constants of Silver, Gold, Copper, and Aluminum. II. The Index of Refraction n,” J. Opt. Soc. Am. 44, 362 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited